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Cavity ring-down is becoming a widely used technique in gas phase spectroscopy. It holds promise
for further important extensions, which will lead to even more frequent use. However, we have
found widespread confusion in the literature about the nature of coherence effects, especially when
the optical cavity constituting the ring-down cell is excited with a short coherence length laser
source. In this paper we use the superposition principle of optics to present a general and natural
framework for describing the excitation of a ring-down cavityregardlessof the relative values of
the cavity ring-down time, the input pulse coherence time, or the dephasing time of absorption
species inside the cavity. This analysis demonstrates that even in the impulsive limit the radiation
inside a high finesse cavity can have frequency components only at the natural resonance
frequencies of the cavity modes. As an immediate consequence, a sample absorption line can be
detected only if it overlaps at least one of the cavity resonances. Since this point is of particular
importance for high resolution applications of the technique, we have derived the same conclusion
also in the time domain representation. Finally, we have predicted that it is possible to use this effect
to do spectroscopy with a resolution much higher than that of the bandwidth of the excitation laser.
In order to aid in the design of such experiments, expressions are derived for the temporal and
spatial overlap of a Fourier transform limited input Gaussian beam with the TEMmn modes of the
cavity. The expressions we derive for the spatial mode overlap coefficients are of general interest in
applications where accurate mode matching to an optical cavity is required. ©1996 American
Institute of Physics.@S0021-9606~96!01847-8#
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I. INTRODUCTION

In the last few years, cavity ring-down spectrosco
~CRDS! has been applied with increasing frequency to
number of problems, allowing highly sensitive absolute a
sorption measurements of weak transitions or rare
species.1–8 Very briefly, CRDS uses pulsed laser excitati
of a stable optical cavity formed by two or more high
reflective mirrors. One observes absorption by molecu
contained between the mirrors at the laser wavelength by
decrease it causes in the decay time of photons trapped i
cavity. Absorption equivalent noise as low a
;3•10210/cmAHz has been demonstrated, and in princip
several orders-of-magnitude-further-improvement is p
sible.3,6

In several of the recent publications on this subject,
have detected a diffuse belief that the behavior of an opt
cavity under impulsive excitation~as in CRDS! is to be con-
sidered radically different from that in presence of contin
ous wave~cw! radiation. This impression has been confirm
by direct discussion with different authors. The purpose
this paper is to clarify the situation by presenting a rigoro
analysis of the excitation of an optical cavity that is va
over the full range of parameters that are likely to be
importance in CRDS. Further, the framework introduc
here may be useful in the design of new experiments.

The problem can be summed up as follows. Time d
main and frequency domain representations of the dynam
J. Chem. Phys. 105 (23), 15 December 1996 0021-9606/96/105(23)
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of physical systems having linear response are mathem
cally equivalent, since they are uniquely mapped into e
other by a Fourier transformation. Given this equivalen
one is free to choose the most convenient description for
problem at hand, as the final results will not depend on t
choice. However, the frequency representation has the
eral advantage that the spectrum of the ‘‘output’’ of a pass
device can be simply written as a system response func
times the spectrum of the ‘‘input.’’ In contrast, the gene
time domain system response must be expressed as a co
lution integral of the input with a time dependent syste
response function. For an optical cavity, ‘‘input and outpu
are the electromagnetic fields arriving from the optic
source and going towards the detector, respectively.
CRDS, one may have to deal with input laser pulses that
short compared to the light round trip time inside the cavi
In this limit, it is clear that destructive interference pheno
ena among the different time components of the injec
light should be negligible. More simply, after a pulse is pa
tially transmitted through the cavity input mirror, it does n
spatially overlap or interfere with itself as it ‘‘rings down’
inside the cavity. Therefore, it might appear more conveni
to use the time domain representation to treat CRDS. It tu
out that the frequency domain analysis of the light fie
inside and transmitted by a ring-down cavity is quite simp
and of general scope. No restrictive assumptions on the p
duration and bandwidth, the absorbing transition linewid
or the cavity quality factor are required. For the case of n
10263/10263/15/$10.00 © 1996 American Institute of Physics
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10264 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
row absorption lines~which have long dephasing times!, the
frequency domain analysis is substantially easier than tr
ing time dependent response functions and sample
radiation as would be required for a proper time dom
treatment. One of the conclusions of this analysis is that
absorption is possible even in the short pulse limit when
frequency of a narrow absorption feature falls between
cavity modes. For complementarity we also give a~less gen-
eral! time domain treatment of this important problem, whi
obviously reaches the same conclusions. This result was
viously obtained by Zalicki and Zare,9 but then recently con-
tested by Schereret al.7

The only simple but powerful principle to be applied
the frequency domain analysis is that of linear superposi
of the effects produced by the different frequency com
nents in the incoming field.10 We will show that the standard
spectral response function of an etalon can be applied reg
less of the temporal profile of the input field. While we e
pect that many readers will find this result to be so obvio
as to not require an explicit derivation, the CRDS literature
rife with statements that contradict this view. Since t
comblike structure of this response function reflects the p
ence of cavity resonances, the cavity mode structure ca
considered as a fixed characteristic of the system, and n
something that builds up only if the excitation coheren
time is sufficiently long compared to the cavity optical rou
trip time, as stated in several recent publications. One m
be careful not to confuse interference in the time and in
frequency domain. Even if the pulse injected into the cav
is such that its time components do not overlap and interf
the multiple reflections from the cavity mirrors still result
destructive interference for those frequency component
the pulse which do not overlap any cavity resonances
constructive interference of those that do. Correct predicti
of the cavity behavior in different situations follows nat
rally if one thinks in terms of the cavity resonances in fr
quency space and the associated spatial mode structure~lon-
gitudinal and transversal! in physical space.

Contrary to what has been suggested in the CRDS lit
ture, one of the most interesting consequences of our con
erations is that it is possible to turn the high finesse m
structure of the ring-down cavity to a tremendous advanta
We will show that one can use CRDS with a spectral re
lution much higher than that of the pulsed laser source
order to aid in the design of such experiments, express
are derived for the temporal and spatial overlap of a Fou
transform limited input Gaussian beam with the TEMmn

modes of the cavity.
A note is warranted about the application of linear

sponse theory to CRDS. As it has already been noted,8 even
in presence of intense and short laser pulses, nonlinea
fects such as the saturation of molecular transitions are
ally negligible in CRDS. This is principally due to the stron
attenuation of the input laser pulse upon transmission of
cavity input mirror. We would like, however, to warn tha
there may exist special conditions in which nonlinear effe
may become relevant, specifically for very strong transitio
and a ring-down cavity employing mirrors of substant
J. Chem. Phys., Vol. 105, N
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transmittivity ~as in the uv!. In such cases, one must go b
yond linear response theory and the superposition princ
should be used with caution.

II. THE SPECTRUM OF LIGHT INSIDE AND
TRANSMITTED BY A MODE MATCHED RING DOWN
CAVITY

Consider a ring-down cavity~RDC! formed by two mir-
rors with radius of curvatureRc , separated by a distanceL
~which must be,2Rc to have a stable cavity12!. We define
t r52L/c, the round trip time of the cell, wherec is the speed
of light in the medium between the mirrors. For simplicit
we will assume that the mirrors have identical electric fie
reflectivity 2R and transmittivityT . The results derived
below are easily generalized to the case of assymetric c
ties and the results are qualitatively the same. If the mirr
were infinitely thin, continuity of the electric field would
give the relationshipR1T 51 between these comple
quantities.11 The reflections and transmitions of the multip
surfaces inside dielectric mirrors can be combined~with
propagation phase and absorption! into a single effective fre-
quency dependentR andT ~an application of the superpo
sition principle!, as long as one is outside of the region of t
coating. However, this treatment will not yield a continuo
electric field, since this solution is not appropriate inside
mirror coatings where one is beyond some surfaces and
fore others. The more familiar intensity reflectivity and tran
mittivity are given byR5uRu2 andT5uT u2. For now, we
will assume that we can treatR andT as constants over th
bandwidth of input radiation to the RDC. Let us consid
excitation of the RDC by light of arbitrary electric fiel
Ei(t), as measured at the input mirror of the cavity. We w
also initially assume that the radiation is mode matched
the TEM00 mode of the cavity. In these conditions the tran
verse beam profile is stationary and we can treat the prob
as one dimensional along the cavity optical axisz. Below,
we will consider the effects of excitation of higher ord
transverse modes. We can calculate the electric field of l
leaving the cavity by adding up all paths that lead to outp
which make 1, 3, 5, etc., passes through the cell. The l
making one pass has an amplitude ofT 2Ei(t2t r/2) at time
t. Each additional round trip through the cell changes
amplitude by a factor ofR2 and leads to an additional reta
dation of t r . Summing the contribution of the possibly infi
nite number of passes leads to the intracavity electric fie
E(z,t) at positionz and the output electric field,Eo(t) ~mea-
sured outside the output mirror atz5L),

E~z,t !5 (
n50

`

T R2nEiS t2 z12nL

c D
2T R2n11EiS t2 2~n11!L2z

c D , ~1!

Eo~ t !5 (
n50

`

T 2R2nEi~ t2~n1 1
2!t r!. ~2!
o. 23, 15 December 1996
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10265K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
We can calculate the spectrum~in the angular frequency
v) of this field by computing the Fourier transform~FT!. For
light transmitted by the cavity we have

Ẽo~v!5
1

A2p
E Eo~ t !exp~2 ivt !dt

5
1

A2p
E (

n50

`

T 2R2nEi~ t2~n1 1
2!t r!

3exp~2 ivt !dt

5 (
n50

`

T 2R2n exp~2 i ~n1 1
2!vt r!Ẽi~v!

5T 2 expS 2
i

2
vt rD Ẽi~v! (

n50

`

@R2 exp~2 ivt r!#
n,

~3!

Ẽo~v!5

T 2 expS 2
i

2
vt rD

12R2 exp~2 ivt r!
Ẽi~v!.

Above, Ẽi(v) is the FT of the input radiation. The outpu
spectral density,I o(v), of this light is proportional to
uẼo(v)u2, which gives

I o~v!5
T2

~12R!214R sin2~ 1
2 vt r2u!

I i~v!. ~4!

In this expression,u5arg(2R), i.e., the phase shift pe
reflection of the mirrors. Going through the same analysis
light inside the cavity, starting fromE(z,t) we find

I ~v,z!5T
~12AR!214AR sin2~k~L2z!2u!

~12R!214R sin2~ 1
2 vt r2u!

I i~v!,

~5!

wherek5v/c is the wave vector of the light. This show
that for a fixedv or monochromatic input field, light travel
ing in both directions inside the cavity leads to stand
waves with near nodes in the limit thatR;1. The time av-
eraged total intensity atz is given by* I (v,z)dv. For exci-
tation of the cavity with a pulse short compared tot r , whose
bandwidth will be larger than;1/t r , this integral will wash
out the standing waves except close to the mirrors.

The above equations are essentially identical to the
pression for the transmission of an etalon found in stand
optics texts, such as that of Born and Wolf~Ref. 13, page
327!. The output spectrum is equal to the input spectr
times a transmission function. For aR;1, this intensity
transmission function versus frequency consists of a serie
narrow peaks with full width at half maximum~FWHM!
given by DnFW5(12R)/(ARpt r), separated by the fre
spectral range, FSR51/t r , of the etalon. The finesse of th
etalon is defined by the ratio of the FSR to the FWHM and
equal to (pAR)/(12R). While Eq.~4! is usually derived by
considering an infinite wave of pure frequency, it should
noticed that we have made no assumption as to the shap
Ei(t), and thus the input can have any pulse length or coh
J. Chem. Phys., Vol. 105, N
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ence time~either short or long compared tot r). This is, of
course, a straightforward consequence of the superpos
principle of linear optics, which states that the optic
throughput at each frequency can be calculated separa
and is independent of any other spectral components of
wave.13

In their recent paper, Schereret al.7 make the claim ‘‘it
seems intuitively more reasonable that the onset of cohe
effects should explicitly depend upon the coherence len
of the light, since if the phase of the overlapping light is n
preserved, a regular interference will not necessarily oc
These results underscore the complexity associated with
dicting the behavior of optical resonators which are injec
with pulsed laser light, and the subsequent limitation of a
plying cw–based model to the pulsed regime.’’ The deriv
tion presented above demonstrates that this claim is inc
sistent with the superposition principle of optics. Th
coherence length of the input pulse appears in our analys
part of Ẽi(v) and only affects the relative excitation of di
ferent resonance modes of the cavity.

The following considerations might help to furthe
clarify pulsed excitation of an etalon. In the case of an i
pulsiveEi(t) shorter thant r , it is clear that there is no de
structive interference of the temporal components of
pulse. This is the case if dispersion effects are not su
ciently strong to make the pulse duration become longer t
t r before the pulse is completely decayed. However, abs
ing molecules inside the cavity do not see a single pulse,
also its recurrent reflections, with a well defined and const
period t r . Here, we neglect fluctuations of the cavity lengt
which is a good approximation if we consider that a typic
optical dephasing time,T2 , is much shorter than mechanic
vibrations. It is this strict recurrence that produces cohere
effects if the molecular transitionT2 is longer thant r . In the
frequency domain, we have shown that, due to the rec
rences, the spectrum of the injected light is modulated
this modulation is mathematically represented by multiplic
tion of the initial spectrum by the comblike transfer functio
of the cavity.

If we were to select a single one of the pulses in t
cavity ring-down, say by using a fast electro-optic switch
would have the same spectrum as the input radiation un
the assumptions made above. Of course, such a switch
change its transmission on a time scale less thant r , and thus
will introduce a spectral broadening greater than the spac
between cavity modes of the RDC. The etalon comblike
ter convoluted with the spectral broadening produced by
switch will just reproduce a highly attenuated version of t
input pulse spectrum. Notice that since the optical switch
time dependent system, it cannot be represented in frequ
space by simple multiplication by a spectral response fu
tion, but by a convolution operation.

The fact that a series of equally spaced decaying repl
of the same pulse has a spectrum which is different from
of the single initial generating pulse, is a consequence of
properties of the FT. The fact that this frequency spectr
contains resonances which are closely the harmonics of
o. 23, 15 December 1996
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10266 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
fundamental 1/t r is borne out by the rigorous application o
the superposition principle given above, but may be also
derstood in simpler~though less general! terms as follows. If
t r!td and we neglect the phase shift per reflection, the
peating pulse is well approximated as a product of an ex
nential decaying envelope exp(2t/2td) times a periodic func-
tion f (t) with period t r . It is a well known property of
periodic functions that they can be decomposed in a Fou
series asf (t)5(m52`

1` f m exp(2pimt/tr). Therefore, we find
again that only harmonics of the base frequency 1/t r must be
present. The effect of the decay is to add a finite Lorentz
width to these resonances. This is seen in mathema
terms by taking the FT of the productf (t)3 exp(2t/2td)
and recognizing that this equals the convolution of the in
vidual FT’s of each operand~Faltung theorem!. The FT of an
exponential decay is a Lorentzian, while the FT of the s
of circular functions exp(2pimt/tr) is a sum of delta functions
d(v22pm/t r). The convolution then gives a sum of Loren
zians whose center frequencies are the harmonics oft r ,
which is a good approximation to the comblike cavity tran
mission function in Eq.~4! in the above limit oft r!td .

If one looks at the field in the direction of the reflectio
from the cavity, one will find both the direct reflection of th
input pulse plus a pulse train lasting a timetd that comes
from intracavity radiation re-transmitted by the input mirro
In computing the spectrum of this pulse, there will be d
structive interference for those spectral components of
input pulse which are resonant with those of the
transmitted pulse train, leading to ‘‘holes’’ in the spectru
of the reflected light. This is of course a natural conseque
of the need to separately conserve energy for each spe
component.

Let us now relax the assumption thatR andT are fre-
quency independent, and allow for the presence of an abs
ing medium inside the cell with an absorption coefficie
given by a(v) and index of refraction given byn(v). In
principle, we could repeat the above calculation directly
the time domain, but then we would need to consider
time dependent response functions of the mirrors and
re-radiation by the molecules~Ref. 14, p. 490!. However, as
long as we remain in the linear response limit, we can exp
the superposition principle to look at the reflection and
sorption of each spectral component separately, which
just complex multiplicative factors. Adding up the multip
paths for each spectral component, we find the following
the spectrum of light transmitted by the cavity

Reff~v!5R~v!e2a~v!L,

k~v!5
n~v!v

c
,

Ẽo~v!5
T 2e2aL/2e2 ikL

12R2e2aLe2 ik2L Ẽi~v!5A2pG̃~v!Ẽi~v!,

~6!

I o~v!5
T2e2aL

~12Reff!
214Reff sin

2~kL2u!
I i~v!, ~7!
J. Chem. Phys., Vol. 105, N
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where we have introduced the ‘‘spectral’’ Green functi
G̃(v) ~FT of the usual time dependent Green function! for
the frequency response of the cavity. For the spectrum
light inside the cavity we have instead

I ~v,z!

5T
@12ARea~z2L !#2e2az14ARe2aL sin2~k~L2z!2u!

~12Reff!
214Reff sin

2~kL2u!

3I i~v!. ~8!

In order to determine the time dependent intensity of lig
transmitted by the cavity, which is the quantity measured
CRDS, we must compute the inverse FT ofẼo(v). Using the
convolution or Faltung theorem, this can be expressed in
following standard form:

Eo~ t !5E G~ t2t8!Ei~ t8!dt8, ~9!

whereG(t2t8) is the Green’s function, which represents t
cavity response to a delta function input. For the ring-do
cavity, this can be written from the expression above as
lows:

G~ t !5
1

2pE T 2e2aL/2e2 ikL

12R2e2aLe2 ik2L e
iv~ t !dv. ~10!

In this integral, one should keep in mind thata, k, R, and
T are all functions of the integration variablev. We wish to
point out that up to this point in the analysis we have ma
no assumptions beyond linearity of optical response, wh
is implied by the use ofn(v) anda(v), and the superposi
tion principle of optics.

As long as the width of each absorption line is mu
greater than the width of the individual resonances~i.e., the
T2 for the optical transition is short compared totd), each
resonance of the cavity will still have a Lorentzian shap
For realistic parameters at optical frequencies, the tra
time broadening of molecules through the narrow TEM00

cavity mode will greatly exceed the width of the resonanc
~but it will be much narrower than their separation!. The
Lorentzian resonance shape implies that the decay of in
sity emitted from the cavity, following impulsive excitatio
of a single mode, will be exponential. We point out that th
limit is violated in Balle–Flygare-type FT microwave spe
troscopy, which is conceptually similar to cavity ring-dow
but where typically theT2 due to transit time is long com
pared to the cavity decay time.15

In this limit of cavity resonances much narrower than t
interval over which the other frequency dependent terms
the expression for the response function change, we can
tegrate over each resonance separately. By expanding
exponential exp(2ik2L) to first order around eachvq where
k(vq)L5pq1u, we get a sum over Lorentzian amplitud
terms for which the inverse FT can be computed. The res
ing expression is
o. 23, 15 December 1996
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10267K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
G~ t !5
1

A2p
(
q

A~vq!expS 2
t2t r/2

2td~vq!
D

3exp@ ivq~ t2t r/2!#Q~ t2t r/2!, ~11!

whereQ(x) is the step function~51 or 0 for x.0 or ,0,
respectively! and

td~vq!5
t rReff

2~12Reff!
, ~12!

A~vq!5A2p
T 2e2aL/2

t rReff
, ~13!

with Reff(v) andk(v) as defined above. Note that due to t
small but finite propagation delay through the cavity, caus
ity requires thatG(t) is zero fort,t r /2 rather than just for
t,0.

Equations~9! and~11! demonstrate that the requireme
on the input source to observe a cavity ring-down is not t
its pulse width be short compared tot r , or eventd , but only
that the falling edge of the input pulse be short compared
td(vq) for the modesq that are significantly excited. Thos
modes will be determined by the spectrum of the input
diation, and~when we consider the effect of higher tran
verse modes below! the spatial properties of the radiatio
However, for a typical pulsed laser the total extent in time
the input radiation is itself much shorter than the cavity d
cay times. In this impulsive limit, we can neglect the exp
nential cavity decay during the input pulse, and if we pla
the time origin at the input pulse, we can explicitly evalua
the integral in Eq.~9! using Eq.~11! to give

Eo
imp~ t !5(

q
A~vq!expS 2

t2t r /2

2td~vq!
D

3exp~ ivq~ t2t r /2!!Ẽi~vq!, ~14!

for times greater than the end of the input pulse plust r /2.
The result is a sum of damped exponential decays for e
cavity resonance. Since the electric field has a decay lifet
of 2td , the intensity in each mode has decay lifetime oftd .
The decay rate, and thus the spectral width, of those r
nances which overlap the sample absorption spectrum
be increased. Sample absorption lines that do not ove
excited cavity modes do not contribute to the rate of lig
intensity decay and are not detectable in CRDS.

If we treatn(v) and u(v) as changing slowly withv
~thus neglecting dispersion effects due to narrow absorp
lines!, the cavity mode spacing is given by

FSR5
c

2LS n~v!1v
dn

dv D2c
du

dv

. ~15!

For constantdn/dv and du/dv, we have equally space
resonance modes. If in additionReff is constant, the pulse in
the cavity travels with no change in shape since the effec
loss and group velocity is the same for all frequencies c
tained in its bandwidth. Dispersion changes the velocity
the wave due to both thev (dn/dv) term, which is standard
J. Chem. Phys., Vol. 105, N
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~Ref. 10, p. 302!, and thedu/dv term which reflects that
different wavelengths have different average penetration
the optical coating of the mirrors and thus travel differe
pathlengths. The effectivet r is given by 1/FSR@where FSR
is now defined by Eq.~15!# for a cavity with dispersion. If
we consider the contribution ton(v) by the sample absorp
tion, we see that this will slightly increase the index and th
decrease the mode spacing on the low frequency side
transition, and the opposite on the high frequency side. Z
icki and Zare9 suggested that dispersion effects are gener
negligible for the weak absorption strengths investigated
CRDS. We agree with this if one is observing only the dec
of energy in the cavity, as is typically done, since in this ca
the interference between different excited modes is filte
out. However, if one attempts to model the time depend
shape of the train of peaks leaving the cavity, then the sm
shifts in resonance frequency caused by dispersion mus
considered along with the frequency dependent absorpt
We have explicitly shown by numerical calculation, usin
Eq. ~14! for the case of a Lorentzian absorption line narro
compared to the input pulse, that the cavity output displ
the expected sample free induction decayafter the excitation
pulse, only if these shifts in resonance frequencies are
cluded in the calculation. This is an interesting subject
future investigation16 since changes in pulse shape may
useful for extracting information about the sample absorpt
spectrum on frequency scales between the linewidth of
laser used to excite the RDC and the spacing between lo
tudinal cavity modes.

Schereret al. state in their paper7 that, ‘‘In the case of
simple exponential decay, the cavity does not act as an
lon, i.e., standing waves are not established in the cavit
On the contrary, exponential decay is a natural conseque
of the RDC being a high finesse etalon, if it is excited on
single cavity mode. More typically, we have multiple mod
excitation, due both to the bandwidth of the excitation sou
and due to lack of exact transverse mode matching. As
cussed by Zalicki and Zare,9 for multiple mode excitation we
expect in general a multiple exponential decay of the R
unless the excited modes have the same lossReff . Even in
this case, the intensity of the decay will not be exactly exp
nential, but show modulations due to beating between dif
ent mode frequencies. Beating among longitudinal mo
~same transverse mode numbers! will have periods that are
submultiples oft r. This simply corresponds to the expone
tially decaying series of pulses generated by the initially
jected light as it rings down inside the cavity. Thus a simp
exponential decay of the cavity implies that only one lon
tudinal mode has been excited, which also requires tha
standing wave must be produced inside the cavity, in dir
conflict with the above statement of Schereret al. In most
applications of CRDS, however, the difference betweent r
andtd is large enough that this round-trip beating pattern c
be easily filtered electronically without significantly distor
ing the exponential signal envelope which is the sum of
decay of each excited cavity mode.
o. 23, 15 December 1996
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10268 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
III. CAVITY RING DOWN WITH A NARROW
BANDWIDTH ABSORBER

The paper by Zalicki and Zare9 considered the effect o
having an intracavity absorption feature with a linewidth n
rower than the bandwidth of the laser used to excite
cavity. As long as one is exciting many modes of the cav
across the absorption line, this leads to nonexponential ca
decay. This has been verified by Jongmaet al.17 and more
quantitatively by Hodgeset al.18 These effects are closel
related to the well known line shape distortions observed
conventional absorption spectroscopy when the instrume
resolution is not higher than the width of spectral featur
There, the observed sample absorption~integrated over the
instrument function! does not follow Beer’s law for sample
that are optically thick.19 For optically thin samples, suc
measurements give the correct integrated line strength~also
known as the equivalent width!, though not the correct pea
value due to instrumental broadening of the line. Hodg
et al.18 have demonstrated that an additional complicat
can arise in cavity ring-down due to the spectral structure
conventional multimode pulsed lasers. This results in int
sity distortions when the width of an absorption feature
comparable to the width of structures in the spectrum of
excitation laser. We anticipate that these effects can be
moved by averaging ring-down decays observed as
modes of the excitation laser are swept to produce a sm
average excitation line shape.

Another important consideration discussed by Zali
and Zare is the relationship between the width of the abs
tion features and the FSR of the cavity. They report to sh
that the bandwidth of light admitted into the RDC depen
upon the length of the excitation pulse. We think that this
a consequence of their considering the FT only over a t
interval of the input pulse~which they took to have a squar
wave amplitude! and not of the whole damped series of r
flections the intracavity molecules interact with. Despite th
they recognize that the excitation caused by the coherent
of all the cavity reflections will only excite transitions th
overlap one of the excited modes of the RDC. Thus th
reach the same observable consequence as the present
sis and one may dismiss the differences in our respec
analysis as largely semantic.

In a frequency domain analysis of the problem, o
should integrate~in calculating the FT! over the whole time
of interaction. To consider the spectral content of the rad
tion field only in a given limited time interval is equivalent t
employ a mixed time frequency representation. Time a
frequency localized representations are the subject of w
let transform theory, which is becoming quite an active fie
of research and application in recent years.20

It is often useful to compare descriptions of the sa
phenomena both in the time and frequency domains, tho
they must give the same results. The analysis we will pres
below is also complimentary in that it focuses on the m
ecules in the cavity, while the earlier treatment focused
the optical properties of the system. Consider excitation o
two level system with optical resonancev0 and dipole ma-
J. Chem. Phys., Vol. 105, N

Downloaded¬16¬Feb¬2010¬to¬129.6.144.159.¬Redistribution¬subject¬
-
e
y
ity

n
tal
.

s
n
n
-
s
e
e-
e
th

i
p-
w
s
s
e

,
m

y
aly-
e

e

-

d
e-

e
gh
nt
-
n
a

trix element for the transitionm21. Let the molecule be a
positionz0 at t50 and its velocity along the axis of the RD
be vz . Starting with Eq.~8.1–6! in the text by Yariv,12 and
then using first order time dependent perturbation theory,
find that the coherence between the two states,r21, created
by the time dependent electric field is given by

r21~ t !5e2 iv0t
i

\E2`

t

m21E~z01vzt8,t8!eiv0t8

3~r112r22!edt8, ~16!

where (r112r22)e is the equilibrium difference in popula
tions between the lower and upper levels of the optical tr
sition. We will assume that the input pulse is shorter th
one round trip time,t r . This is done only for simplicity. In
fact, we could divide any arbitrary incoming field in portion
that are shorter than the round trip time, and the followi
analysis could be applied to each of these ‘‘time comp
nents’’ and the results added. We will use Eq.~1! for
E(z,t) for the field inside the RDC.21 Putting this into the
above equation, we find for the coherence induced by
pulse

r21~ t !5e2 iv0t (
n50

int~ t/tr! H r1R
ne2 i2nu expF iv0S 11

vz
c DntrG

2r2R
n11/2e2 i ~2n11!u expF iv0S 12

vz
c D ~n11!t rG J ,

~17!

wherer6 is the coherence produced by a single forward
reverse going pulse in the cavity

r65
i

\
m21AT~r112r22!e expS 6 iv0

z0
c D

3E Ei* ~ t !expS iv0S 16
vz
c D t Ddt. ~18!

We will get constructive interference~and thus net absorp
tion! of the coherence produced on successive round trip
the cavity only if v0 satisfies the following equation with
integerN

v0S 16
vz
c D5

2p

t r
N1

2u

t r
. ~19!

Thus we will only get net absorption by the sample if eith
the forward or backward Doppler shifted Bohr frequen
~the left hand side of the above equation! satisfies the same
equation as a cavity resonance@see Eq.~4!#. The cavity acts
to produce a multiple-pulse time domain ‘‘Ramsey’’ fring
pattern, as previously noted by Zalicki and Zare.9 Including a
T2 for the optical transition will allow off resonance absor
tion, but this is just equivalent to considering the resulti
line broadening in the frequency domain. Thus we reco
the condition that CRDS is only sensitive to sample abso
o. 23, 15 December 1996
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10269K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
tion that overlaps one of the very narrow cavity resonan
excited by the input radiation, even in the limit of short pul
excitation.

The spectral selectivity of sample excitation inside
RDC can be shown to be demanded also by the laws
thermodynamics. Let us suppose, contrary to what we h
demonstrated above from first principles, that the RDC d
not act as an etalon for short pulse~or short coherence
length! excitation, and that the full bandwidth of the puls
enters the cavity and excites all optical transitions that ov
lap its spectrum, as is claimed by Schereret al.7 It has been
experimentally demonstrated that spontaneous emissio
turned off in a cavity with no mode resonant with the atom
transition.22 If black body radiation could enter the cavit
and excite an atom, but the atom were not able to unde
spontaneous emission, an infinite atomic electronic temp
ture would be produced by interaction with a finite tempe
ture heat bath. This clearly would be a violation of the s
ond law of thermodynamics.

The fact that the RDC acts as a frequency selective fi
might lead to the erroneous conclusion that CRDS is
suitable for quantitative spectroscopy of high resolut
spectra. This is simply not the case. As Meijeret al.5 have
shown, the excitation of many transverse modes of the R
will lead to a near continuous spectrum of cavity resonanc
eliminating this potential problem. We will return to th
point below. At present, we will show how even with sing
mode excitation of the RDC cell, one need not miss abso
tion features.

The narrow bandwidth of light admitted into a RDC o
fers a tremendous opportunity for high resolution spectr
copy. One has to replace the static length cell considere
Meijer et al., Zalicki and Zare, and others, by a cell who
length can be varied by at leastl/2, ~one-half wavelength!
which will shift each mode by one FSR of this ‘‘etalon.
Since only light with a bandwidth much narrower than t
excitation laser enters the cell, it is possible to do spect
copy with a resolution much greater than that of the la
source used to excite the cavity! Consider a commerci
available OPO laser with a bandwidth of;125 MHz. By
using a cavity of lengthL,75 cm, the mode spacing will b
greater than twice the laser linewidth and if mode match
we will primarily excite only one mode. We can then sc
the cavity and observe a spectrum with a full width inst
mental resolution of;16 kHz for a cavity decay time o
;10 ms. In practice, time of flight of molecules through th
laser beam will limit resolution to about 0.1 MHz, 3 orde
of magnitude better than the FT limit for a few nanosecon
laser pulse. Such experiments will require interferome
control of the length of the RDC, and tracking the excitati
laser as the cavity is scanned. The latter should be of m
difficulty, since in this situation, high contrast interferen
fringes will be observed as the cavity and laser are detun
allowing for standard feedback techniques to be used. M
taining the RDC to interferometric accuracy, say;1 MHz,
can, in principle, be achieved in several ways. One can p
chase a temperature stabilized etalon with such passive
bility, which could be modified to act as a cell for CRDS. B
J. Chem. Phys., Vol. 105, N
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using a continuous wave laser locked on a molecular tra
tion, one could also lock the RDC to a spectroscopic st
dard. Since we can repetitively scan the cavity over one F
and observe the time when the reference laser passes thr
resonance, we can have continuous feedback control of
cavity length. In this case, one can use the time that
excitation laser is fired relative to the scanning ramp to c
trol the frequency sampled on any laser shot.

Thus rather than being a problem, the frequency se
tive nature of the cavity resonances opens the possibility
a dramatic improvement in the resolution available in puls
laser experiments. The combination of this technique w
CRDS should dramatically improve both the sensitivity a
resolution that can be realized in sub-Doppler spectrosco

While this work was being reviewed for publication, w
were informed of an earlier experiment that demonstra
these principles. Teetset al.23 observed a two-photon trans
tion in atomic sodium inside an optical cavity of mode
('16) finesse. By scanning the length of the cavity, th
observed a transition of width 12 MHz, despite a Four
transform limit for the input pulse of about 170 MHz. Th
round trip time of the cavity used (13 ns! was about twice
the length of the input pulse. The spectral selectivity o
served in this experiment directly invalidates the model
CRDS presented by Schereret al.7

The next section will consider the spectrum of longit
dinal modes excited by a FT limited pulse having Gauss
transverse profile. We also need to account for the fact
without great care, one will excite multiple transverse mod
of the cavity, each of which has its own resonance frequen
The following section will then consider the excitation
higher transverse modes.

IV. FRINGES VERSUS THE EXCITATION PULSE
LENGTH

Consider the mode matched excitation of a RDC by
pulse with center frequencyvc . For a sufficiently short in-
put, this excitation will create a traveling pulse inside t
RDC. Neglecting dispersion effects, this pulse will propag
back and forth with no change in intensity profile, except
a slow attenuation. If dispersion effects are important o
the bandwidth of the pulse, either from spectral change
mirror reflectivity and phase shifts, or from the presence o
narrow absorption feature that is not optically thin, the int
cavity pulse shape will change with time. In a frequen
domain picture, this corresponds to the variable mode sp
ings described by Eq.~15!.

The most obvious sign that the cell is acting as an eta
would be the observation of ‘‘fringes’’ in the transmitte
light as the center frequency of the excitation beam
scanned. It is the lack of such a modulation when the in
pulse is short compared tot r that appears to have produce
the belief that a RDC does not act as an etalon in the imp
sive limit. However, it is well known that one does not o
serve interference fringes if one excites an etalon with br
bandwidth light. This is just a consequence of the transm
sion spectrum being periodic with period equal to the FS
o. 23, 15 December 1996
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10270 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
Thus if the input pulse spectrum is much wider than o
FSR, the expected interference structure is ‘‘washed ou
and the transmission coefficient becomes constant with v
T2/2(12R), independent of the center frequency of the
put light pulse.

What happens if the input pulse length is closer to
value of the cavity round trip time? Zalicki and Zare cons
ered this question for the case of square wave excitati9

We presently consider a FT limited Gaussian shaped in
pulse with an intensity FWHM equal toDt, since this pro-
vides a better model for many real lasers. The freque
spectrum of this input pulse will also be Gaussian, with
FWHM equal to 0.44/Dt ~Ref. 24 p. 334!. In the limit of a
high finesse RDC, each resonance will have a nearly Lor
zian shape with peak transmission equal
@T exp(2aL/2)/(12Reff)#

2, and FWHM equal to 1/2ptd ,
where td5n(vq)LAReff/@c(12Reff)# is the decay time for
the qth resonance mode andReff5R exp(2a(vq)) is the ef-
fective reflectivity for that mode.

Cavity resonances will be narrow relative to the spec
structure of the input pulse as long as the pulse duratio
short compared totd . Therefore, in order to calculate th
total intensity transmitted by the cavity, we can treat t
resonances as delta functions. This approximation will br
down, because of the long tails of the Lorentzian resonan
when the width of the input pulse is much narrower th
cavity mode spacing, i.e., whenDt@t r . For each resonanc
modeq at frequencyvq , from Eq. ~4! we find that the en-
ergy transmitted by the cavity is

Jq5J0A p

ln 2

Dt

t r

T2

2~12R!

3expF2S p

Aln 2
Dt

t r

~vq2vc!

FSR D 2G , ~20!

whereJ0 is the energy in the input pulse. The total transm
ted energy is obtained by summing over all the resona
modes. In the limit that the input pulse is short compared
t r the sum over modes can be approximated by an inte
which gives just the factor ofT2/2(12Reff) expected for
incoherent excitation of an etalon. In Fig. 1, we plot the ra
of the predicted transmission divided by this incoherent
citation value for the pulse center frequency exactly reson
with a cavity mode and for when it is exactly halfway b
tween cavity modes. The ratio of the two curves is the
pected fringe modulation as the excitation laser~or the RDC
length! is scanned. Significant modulation is observed wh
Dt is greater than;0.5t r . This can be rationalized when on
remembers both that the Gaussian has a tail and is n
square wave~where there would be zero modulation f
Dt,t r) and also that interference is given by overlap of t
electric field, which has a FWHMA2Dt. When one recalls
that for a Gaussian pulseDtDn50.44, we see that when th
FWHM of the pulse is half the cavity round trip time, th
spectral width has a FWHM only 0.88 as large as the spac
between the longitudinal modes. When the laser pulse is
tered on a mode, the ratio of the mode excitation to that o
J. Chem. Phys., Vol. 105, N
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next neighbors is given by exp@2(pDt/Aln 2t r)2#.When
Dt50.5t r , this ratio is already only 0.028, while fo
Dt5t r , this ratio is 6.6 10

27. Thus very selective excitation
of a transverse mode matched RDC is possible with FT l
ited pulses with FWHM of;0.5t r or longer. Below, we will
see that the need for mode matching can be relaxed in ca
a confocal~or more generally re-entrant! cavity configura-
tion.

V. EFFECT OF HIGHER ORDER TRANSVERSE
MODES

Our analysis up to this point has been one dimensio
which is appropriate for light perfectly mode matched in
the RDC. In order to consider the excitation of a RDC pr
duced by a beam with an arbitrary spatial distribution,
must again use the superposition principle, but now in sp
rather than time, expanding the input wave in a set of cav
modes. Due to the finite transverse extent of an open op
cavity, its resonances, unlike those of the closed electrom
netic cavities commonly treated in textbooks, need not b
complete, orthogonal set~Ref. 24, p. 568!. However, stable
cavities with small diffraction losses have resonance mo
closely approximated by Hermite–Gauss functions up
relatively high transverse mode orders, which do have
attractive property~Ref. 24, p. 569!. We will derive the gen-
eral cavity output, for an arbitrary input pulse, by expans
in both frequency~for the time dependence! and cavity
modes~for the transverse spatial dependence!. While the fol-
lowing discussion is for the response of the cavity calcula
at its output, the same treatment can be applied to the fi
produced inside the cavity and leads to similar results.

In the paraxial approximation~small propagation angle
and deviations from the optical axis!, the Maxwell equation
for wave propagation in a homogeneous dielectric medi
@refraction indexn(v)] has a set of solutions known as th
transverse electro–magnetic~TEM! modes,12,24whose order

FIG. 1. Plot of the ratio of the predicted transmission divided by its inc
herent excitation value for the pulse frequency centered on a cavity m
~solid line! and for when it is halfway between cavity modes~dashed line!.
o. 23, 15 December 1996
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10271K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
is indexed by two positive integers (m,n). The spatial field
amplitude for these modes is written in terms of Hermit
Gauss functions

Emn~x,y,z,v!5
1

A2m1n21pn!m!w2~z!
HmS A2x

w~z!
D

3HnS A2y
w~z!

D expS 2
x21y2

w2~z!
2
ik~x21y2!

2Rf~z!

2 ikz1 i ~m1n11!h~z! D . ~21!

These monochromatic waves have wave vec
k5n(v)v/c along z, and time dependence exp(ivt). They
are characterized by a transverse beam waist of sizew(z), by
a radius of curvature of the phase frontsRf(z), and by a
phase shift induced by diffractionh(z). For free space
propagation along the paraxial axisz, these TEM parameter
change as follows:

w~z!5w0A11S z2zw
z0

D 2,
Rf~z!5~z2zw!F11S z0

z2zw
D 2G , ~22!

h~z!5arctanS z2zw
z0

D ,
with zw the focal point of the wave, where the beam wa
reduces to its minimumw0 . Once the value ofw0 is given,
the ‘‘confocal length’’z0 is also determined

z0[
pw0

2n~v!

l
. ~23!

At fixed frequencyv, fixedw0 ~or equivalentlyz0) and fixed
Rf ~or z), the set of TEMmnmodes form a complete orthogo
nal and normalized set of functions

E Em8n8
* ~x,y,z,v!Emn~x,y,z,v!dxdy5dm8mdn8n ,

~24!

(
m,n

Emn* ~x8,y8,z,v!Emn~x,y,z,v!5d~x82x!d~y82y!.

In the axially symmetric case, each mode is degenerate
respect to polarization.

If we wish to consider light coupled into an optical ca
ity made of two mirrors, then one should select the be
parameter so that the radius of the beam just matches
radius of curvature of each mirror at its surface. For
symmetric cavity considered in here~both mirrors with cur-
vatureRc , as before!, this condition implies that the beam
focus is at the center of the cavity and the confocal len
is12

z05
1
2A~2Rc2L !L. ~25!

More general expressions can be found in the text
Yariv.12 The condition thatz0 is real defines the range o
J. Chem. Phys., Vol. 105, N
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stable symmetric cavitiesL,2Rc . While z0 for the TEM set
of cavity modes is frequency independent, note that this
not the case forw0

25lz0 /pn(v).
We now consider an input field of angular frequencyv

that has a spatial distribution that just matches the TEMm,n

mode of the field. We denote the amplitude of this field
Ẽi,mn(v). Similar to the one dimensional case@Eq. ~7! and
following#, we can sum over all round trips through the ca
ity to arrive at an output electric field, which will still matc
the TEMm,n in the perpendicular plane and have an amp
tude given by

Ẽo,mn~v!5A2pG̃mn~v!Ẽi,mn~v!, ~26!

where

G̃mn~v!5
1

A2p

T 2e2aL/2e2 ikL

12Rmn
2 e2aLe2 i ~k2dkmn!2L

, ~27!

dkmnL52~m1n11!arctanA L

~2Rc2L !
. ~28!

The different transverse amplitude distribution of each TE
mode may result in different losses due to spatially vary
defects in the mirrors surfaces and to their finite size. W
account for this by using mode dependent reflectivit
Rmn(v).

Like in the one dimensional case,G̃mn(v) is a comblike
transmission function, and we can identify the longitudin
cavity resonances with the peaks of this function, and th
decay rate with their width. The functional dependence
G̃mn(v) is similar to that for the one dimensional case of E
~7!, but the position of its resonances has a shift depend
on the TEM order, due to theh(z) term in Eq. ~21!. The
frequencies of the longitudinal resonances are found by
solutions of the following equation~obtained numerically by
iteration!

vmnq5
c

n~vmnq!L
Fpq1u12~m1n11!

3arctanA L

~2Rc2L !
G , ~29!

whereu is the phase change upon reflection, introduced e
lier. In the time domain, each mode will have an exponen
decay with a time constant~for power! given by

td,mn~vmnq!5
t rRmn,eff

2~12Rmn,eff!
~30!

with Rmn,eff5Rmn exp(2a(vmnq)L). Note that ifRmn(v) is
not constant due to mode dependent loss, we will hav
nonexponential decay even without sample absorption.

We will now consider excitation of a cavity by an arb
trary input pulse whose electric field is given b
Ei(x,y,z,t). Using the superposition principle, we can e
pand Ei(x,y,z,t) in terms of the set of functions
Emn(x,y,z,v) for which we have just presented the tran
mission properties. The total output field,Eo(x,y,z,t) can
then be written as
o. 23, 15 December 1996
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10272 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
Eo~x,y,z,t !5(
mn

E G̃mn~v!Ẽi,mn~v!Emn~x,y,z,v!eivtdv,

~31!

whereG̃mn(v) is given by Eq.~27! and

Ẽi,mn~v!5
1

A2p
E E E Emn* ~x,y,z,v!

3Ei~x,y,z,t !e
2 ivtdx dy dt. ~32!

Ẽi,mn(v) is the ‘‘excitation amplitude’’ of the mode with
transverse ordermn and frequencyv. Note that we do not
have to specify at which value ofz the integral is evaluated
at, due to the superposition principle for space propagat

If we assume that the input field has a small fractio
bandwidth, which allows one to neglect the frequency dep
dence of the TEM parameters, we can derive another exp
sion for the time dependent cavity output decomposed o
the spatial TEM modes. For each mode, the cavity respo
is then a convolution of the corresponding Green funct
with the time dependent amplitudeEi,mn(t) for that mode

25

Eo~x,y,z,t !5(
mn

Emn~x,y,z,v8!eik~v8!z

3E GmnS t2t82
nz

c DEi,mn~ t8!dt8, ~33!

wherev8 is the center of the field bandwidth;Gmn(t) is the
inverse Fourier transform ofG̃mn(v) given by Eq.~27!; and
Ei,mn(t) is the inverse Fourier transform ofẼi,mn(v).

We leave to Appendix A the discussion of some spec
cases and examples. An important case is that of a b
which is separable as the product of space and time de
dent functions. A special separable case is when the sp
component of the beam is Gaussian and astigmatic, with
bitrary spot sizes, focal positions and axis, but only sligh
tilted with respect toz as required by the paraxial approx
mation. Then, recursive analytic expression exist and are
rived in Appendix B for the amplitude excitation coefficien
in terms of the beam parameters. These results allow on
model the coupling of a laser operating on a single TEM00

mode to an external optical cavity. In addition, the method
the Appendix B can be extended to input beams with hig
TEM order, and the expressions derived could be applie
the more general case of a beam which is the superpos
of TEM modes characterized by the same arbitrary par
eters. This would be adequate for modeling the cavity c
pling of a nonseparable beam produced by a laser whic
not operating on a single transverse mode.

Let us consider the case when for eachmn the longitu-
dinal resonances inG̃mn(v) are narrow with respect to othe
spectral widths of the problem. In the time domain this i
plies that the variation of the field is faster than the cav
decay times. Then, the same result as in Eq.~11! can be
obtained here and Eq.~14! can be generalized to
J. Chem. Phys., Vol. 105, N
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Eo~x,y,z,t !5 (
m,n,q

Amn~vmn!Ẽi,mn~vmnq!Emn~x,y,z,vmnq!

3expF i S t2 t r
2DvmnqGexpS 2

t2t r/2

2td,mn
D , ~34!

where the factorAmn(v) is given by Eq.~13! with Reff,mn in
place ofReff and td,mn is given by Eq.~30!. For brevity, the
dependence onvmnq has been left implicit for several of th
parameters. The output intensity of the cavity will conta
beating between different excited modes. However, if o
detects the total light intensity crossing the output plane,
orthogonality of the mode functions eliminates beats
tween modes with different transverse mode numbers.

The fraction of input pulse energy coupled to a particu
TEMmnmode is given by the squared magnitude of the mo
overlap amplitude,uEi,mnu2, times a spectral density facto
which for the case of an input pulse with Gaussian tempo
profile was given by Eq.~20!, which is easily generalized to
the present case. Thus together with the results of Appen
B, we have given explicit expressions for the distribution
excitation of different modes of an optical cavity for an inp
pulse of Gaussian shape in space and time, with alignm
restricted by the paraxial conditions and of duration sh
compared to the cavity decay time. The present results
be easily extended, using numerical integration, to treat in
pulses of arbitrary temporal and spatial shape.

As seen by Eq.~34!, the output signal in CRDS is only
sensitive to the sample loss at the frequencies of exc
modes of the cavity, and thus the spectrum of the cavity
important to the design and interpretation of CRDS. We c
see that the longitudinal modes~for fixedm,n) are separated
by angular frequency 2p/t r , while transverse modes~chang-
ing m1n, with q fixed! are separated by (4/t r)
3 arctanAL/(2R2L). The full spectrum of the cavity~say
for an incoming plane wave that excites all TEM orders! will
be continuous if the ratio of these spacings is irrational. I
is rational with the transverse spacing to the longitudi
spacing equal toM /N, the spectrum will consist of a serie
of resonances with frequencies exactly spaced by 1/(t rN),
i.e., exactly a factor ofN less than the separation of th
TEM00 modes. It is easily seen from above that for a con
cal cavity (L5Rc), the transverse mode separation is exac
half of the longitudinal modes, giving a frequency spaci
between resonances of 1/2t r . However, for other values o
the spacing we can get other low order rational ratios.
example, ifL5Rc/2 or 3Rc/2, we will get a frequency spac
ing of 1/3t r , i.e., just 3 times as dense as the TEM00 modes.

For general multiple mode cavity excitation, the tran
verse profile of the light intensity changes shape on e
pass of the cell. For a rational ratio as discussed above
divisor N, the intensity will be exactly periodic~except for
an overall damping factor! after N round trips. This is the
separation condition for the multipass re-entrant cavity c
figurations used and discussed by Herriottet al.26

Meijer et al.5 suggested that one could use a nonconfo
o. 23, 15 December 1996
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10273K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
cavity to achieve an essentially continuum excitation sp
trum and thus eliminate the expected distortions of the ca
ring-down spectrum caused by a static cell acting as a
quency filter. They used slightly diverging input radiatio
~incorrect sign ofRf compared to the mode matched case! to
insure that a wide range of transverse modes were exc
giving a dense spectrum. We would like to point out that o
must be careful not to inadvertently use a mirror separa
that leads to a rational ratio unless the divisor is large eno
that the resulting ‘‘picket fence’’ spectrum has spacin
much smaller than the linewidths in the spectrum one wis
to observe.

We would also like to mention that the clever solution
Meijer et al.5 comes at a cost of reduced spatial resolution
CRDS. This is clearly undesirable when the method is us
as by Zalickiet al.,8 to observe the spatial profile of a sp
cies’ concentration. A perhaps more general problem is
it increases the required size and spatial uniformity of
coatings of mirrors used for CRDS. A multiexponential rin
down signal will result from excitation of modes with diffe
ent transverse profile if the different portions of the mirro
surfaces have different reflectivity. Such variations in refl
tivity may be caused also by dust or dirt. Further, change
the distribution of modes excited as the laser is scanned
lead to variations in the ‘‘background’’ loss of the cell whic
will translate into a poor zero absorption baseline. It is a
important to ensure that the entire cross section of the b
is collected and detected to prevent transverse mode be
from distorting the cavity ring-down. We wish to emphasi
that these are surmountable issues in most experiments
they should be considered in experimental design.

The experiments described by Schereret al.7 have been
interpreted by them as demonstrating that a RDC does
act as an etalon even for input pulses with a FWHM twice
long as the cavity round trip time. They base this in part
the lack of modulation in the observed cavity transmission
a function of the center frequency of their near transfo
limited laser. As is shown in Fig. 1, very strong fringe mod
lation is expected for a transverse mode matched ca
when the input pulse length is as long as twice the ca
round trip time. However, these authors make no mention
their paper of any attempt to mode match the radiation,
to carefully adjust the mirror separation for a re-entrant c
figuration. Thus it is almost certain that the reported lack
fringe modulation is a consequence of the effects previou
predicted by Meijeret al.5 The interference structure ha
been ‘‘washed out’’ due to simultaneous excitation of ma
TEMmn cavity modes. This also naturally accounts for t
fact that they observed a methane spectrum with the s
relative intensities and linewidths when observed with diff
ent length cavities, even though the longitudinal mode sp
ing of the shorter cavity was almost twice the observ
FWHM of the methane lines. Schereret al. claim that their
results contradict the analysis of Zalicki and Zare.9 The
present work demonstrates that the experimental result
Schereret al.are completely in accord with the prior predi
tions of Meijeret al., and in no way contradict the results o
Zalicki and Zare. The same conclusion has been reache
J. Chem. Phys., Vol. 105, N
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Hodges, Looney, and van Zee.27 In a series of careful mea
surements, they have recently verified that CRDS cells h
the expected etalon transmission properties even when
cited with laser pulse length a few times the cavity round t
time, directly contradicting the claims of Schereret al.

For certain applications of cavity ring-down, especia
for obtaining spectral resolution higher than the input las
the mode coupling, or cavity mode structure, or both, w
have to be carefully controlled. Mode matching requires c
trol over four experimental variables:~1! The position of the
input beam relative to the optic axis of the etalon;~2! the
relative input angle;~3! the spot size; and~4! the radius of
curvature. Precise adjustment of the first two is a routine p
of most optical setups and is easily optimized. Control of
second two requires the equivalent of a ZOOM telesco
lens. In addition, if the laser source is not operating on
stable TEM00 mode, spatial filtering will be needed to obta
a Gaussian beam profile that can be matched to the ca
TEM00 mode. Monitoring the size and shape of the intens
emitted from the cavity, say with a camera,18 appears to pro-
vide a direct diagnostic to allow the optimization of the inp
coupling. TheSuper Cavity, a high finesse spectrum analyz
sold by Newport Co., uses a near planar cavity (L!Rc); in
our laboratory we have achieved.90% excitation of the
TEM00 mode of such a cavity by using a GRIN lens at fix
distance from the cavity to focus the output of a single mo
fiber.28 One can thus expect high selectivity with caref
alignment of a near diffraction limited beam, which for mo
pulsed lasers will require spatial filtering. Likely, it will b
more convenient to use a confocal or another ‘‘degenera
mirrors separation. Note, however, that a confocal cavity
unstable if one has any finite difference in the curvature
the two cavity mirrors!12,24 The precision required for the
mirror separation will increase linearly with both the numb
of transverse modes excited and with the ultimate resolu
required. We note that for exactly coaxial excitation of t
cavity with a symmetric beam, one will only get excitation
TEMmn modes with even values ofm andn, and thus have
an effective transverse mode spacing twice what is otherw
expected.

Thus in applications of CRDS one is often interested
either deliberately exciting a known range of cavity modes
in carefully exciting only the lowest order one. It is the
useful to have expressions for the excitation of differe
modes expected for a given input beam. In Appendix B,
give an analytic expression for the overlap of a Gauss
input beam with arbitrary parameters and alignment with
spect to the TEM00 mode of the cavity, and a recursion rel
tionship that allows the overlap with higher order modes
be calculated as well. These general formulae are sufficie
complex that it is difficult to directly gain insight by inspec
tion of the results, though they can be easily programm
and plotted for different ranges of parameters. In Appen
A limiting examples are considered that will likely be usef
estimating precision needed for a specific experimental
rangement.

We wish to close this section with a brief discussion
diffraction effects in optical cavities used in CRDS. Th
o. 23, 15 December 1996
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10274 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
quantitative theory of these effects is rather complicated
we refer the reader to the text by Siegman24 for a good in-
troduction to this subject; the material given below is tak
from this source. It is interesting that the simple first ord
estimate of mode losses, by calculation of the fraction o
given Gaussian mode that ‘‘spills over’’ the mirrors, substa
tially overestimates the diffraction losses. The low ord
resonant modes distort~‘‘pull in their skirts’’ !, falling below
the Hermite–Gaussian function near the mirror edge, ther
effectively reducing diffraction losses. Diffraction losses a
typically characterized by the dimensionless resona
Fresnel number,Nf5a2/(Ll), where 2a is the diameter of
the resonator limiting aperture~usually the mirror coating!,
L is the cavity length, andl the wavelength of resonan
light. Values ofNf;100 are common in CRDS experiment
For a stable cavity not far from a confocal design, the high
order Gaussian modes that will ‘‘fit’’ inside the cavity ape
ture will havem,n'pNf . Given the rapid fall-off of the
Hermite–Gaussian functions beyond their ‘‘classical turn
points,’’ diffraction losses fall rapidly for modes withm,n
below this limiting value. For the TEM00 mode of a confocal
cavity with circular mirrors, the single pass diffraction pow
loss is approximatelyp224Nf exp(24pNf) for Nf.1. This
represents a loss of;4310252 even forNf510!

VI. CONCLUSION

We have demonstrated that contrary to widespread be
coherence effects are important in cavity ring-down spect
copy in presence of narrow absorption lines, independen
the physical or coherence length of the laser pulse use
excite the cavity. We find that the superposition principle
optics provides a natural and convenient framework for p
dicting the effects of cavity excitation, regardless of the sp
tral or spatial characteristics of the light source. Using
frequency domain representation we have shown that
mirrors of high reflectivity the radiation field inside the ca
ity will have negligible spectral intensity outside the cav
resonances. This gives a simple and general solution to
problem of absorption lines narrower than the cavity fr
spectral range, since it indicates that absorption will be
servable only when the lines overlap the cavity resonan
We have shown that the same can also be obtained in
time domain representation by using first order time dep
dent perturbation theory to account for the total molecu
excitation produced as an input light pulse bounces back
forth through the cavity. The problem of missing absorpti
lines in cavity ring-down measurements has been previo
considered,5,9 but we have here discussed in more detail
advantages and possible limitations of the proposed solu
of using high order cavity mode excitation. In addition, w
have argued that the frequency selectivity of a ring-do
cavity can be turned in a tremendous advantage, opening
possibility of using this technique to observe spectra wit
resolution much higher than that of the excitation laser.
nally, we have derived general analytic expressions for
J. Chem. Phys., Vol. 105, N
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culating the transverse mode expansion amplitudes of an
bitrary input Gaussian beam that is coupled into an opt
cavity.

While ring-down cavity spectroscopy is a technique th
yields good results with a very simple setup, a thorough
derstanding of the properties of resonant cavities is neces
for optimal design of the experiment and for this techniq
to be used for quantitative absorption measurements of s
tra with narrow lines.
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APPENDIX A: TRANSVERSE CAVITY MODE
EXPANSION

A good approximation if the input radiation derives fro
a laser operating on a single transverse mode, is that
beam has a separable space and time depende
Eis(x,y,z)Eit(t). Then, if we assume that the TEM param
eters do not change appreciably over the~limited! bandwidth
of the input field, we can deal explicitly with the fastv
dependent term (exp(2ikz)) in the TEM functions and find
that the projection coefficients are also separable

Ẽi,mn
sep ~v!5Ẽit~v!ei ~k2k8!zE Eis~x,y,z!Emn* ~x,y,z,v8!dx dy

5Eis,mnẼit~v!ei ~k2k8!z,
~A1!

Ei,mn
sep ~ t !5Eis,mnEitS t1 zn

c D ,
where theEis,mn are practically constants, andk85k(v8).
Using these results, one can write somewhat simpler exp
sions in TEM modes for the cavity response

Eo
sep~x,y,z,t !5(

mn
Eis,mnEmn~x,y,z,v8!

3E G̃mn~v!Ẽit~v!eiwtdv ~A2!

5(
mn

Eis,mnEmn~x,y,z,v8!eik8z

3E Gmn~ t2t8!Eit~ t8!dt8. ~A3!
o. 23, 15 December 1996
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10275K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
We will now consider two special cases which we belie
will be helpful in selecting experimental parameters.

First, we would like to consider the case of input rad
tion with the same spot size and curvature as those of
cavity TEM00 mode, but having its propagation axis mi
aligned by an angle ofux with respect to the cavity axis, an
displaced by a distance ofx0 in the focal plane of the cavity
We assume the angular and displacement misalignment
in the xz plane. Using the analogy to a harmonic oscillat
this is equivalent to initial preparation of a Glauber coher
state31,32with dimensionless phaser,a, given by

a5
1

A2
S x0w0

2 ikw0 sin uxD . ~A4!

This state will be a superposition of a Poisson distribution
TEMm0 modes, with mean valueuau2 and a standard devia
tion equal to the square root of the mean, oruau. Thus to
strongly excite a range of;K modes, we either need t
displace the input beam;K spot sizes off the optic axis, o
misalign the input angle by;K/kw0 . For excitation of a
large number of modes, this result will be insensitive
small changes in the spot size or radius of curvature a
from the mode matched values.

As a second special case, we consider excitation wi
Gaussian beam aligned with the optic axis of the cavity,
with input values for the spot size,wx , and radius of curva-
ture,Rx , that may not match those,w andRf , of the cavity
modes. In this case, we get for the overlap with the TEM00

mode of the cavity the amplitude,Ei,00 @see Eq.~B6!#,

Ei,005
2wwx

w21wx
21

i

2
kw2wx

2Rf2Rx

RxRf

. ~A5!

The only higher order modes that will have nonzero over
are those with even values for bothm,n. The magnitude of
these overlaps will decrease approximately exponenti
with m1n @see Eq.~B14!#, with the width of the distribution
being;2/Ei,00.

APPENDIX B: GENERAL MODE OVERLAP
AMPLITUDES

We wish to give general expressions for the TEM exp
sion amplitudesẼi,mn(v) of an arbitrary input Gaussia
beam that is coupled into an optical cavity. This problem
mathematically closely related to the calculation of ele
tronic Franck–Condon factors in the harmonic approxim
tion. Below we give a derivation that exploits a method o
of the authors developed for that problem.33 Recently, we
became aware of two previous publications that repor
mode ‘‘coupling coefficients.’’ The first was an article b
Kogelnik29 which provided general close form expressio
for the case of a perfectly aligned cavity, but only presen
results for the coupling to the lowest order mode in the c
of a misaligned input beam. Bayer–Helms30 presented re-
sults with arbitrary misalignment as well as input mode m
match. The resulting expressions, however, are rather c
J. Chem. Phys., Vol. 105, N
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plex and appear much more difficult to use than the sim
recursion relationships given below. Further, neither of th
previous works dealt with the case of a cavity or input be
with astigmatism, which is easily treated by the present
proach.

The z axis of our coordinate system is defined by t
optical axis of the cavity. For the case of a symmetric cav
the origin of the coordinate system is located at its cen
We will pick an arbitraryxy plane ~a fixed value ofz) to
compute the overlap integrals, where the cavity TEM mod
are characterized by the spot sizew(z), radius of curvature
Rf(z), and phaseh(z) given in Eqs.~22! together with Eqs.
~23! and ~25!. These TEMmn modes can be separated
products of two components,Em(x) and En(y) @see Eq.
~21!#, with

Em~x!5
A4 2/p

A2mm!w
HmSA2xw D

3expS 2
x2

w2 2
ikx2

2Rf
2

i

2
kz1 i Sm1

1

2Dh D . ~B1!

For the input beam, we will assume a generic free sp
elliptic Gaussian beam.12 In the paraxial approximation, the
axis of this beam will have tilt anglesux anduy in thex and
y directions. We will take the origin of the beam coordina
system at the point (x00,y00,0) of the cavity coordinate sys
tem. By writing the overall tilt as a product of a rotationux
around they axis and then byuy around the rotatedx axis,
and using the paraxial approximation of small angles, o
can write the transformation from the beam coordina
x8, y8, z8 to the cavity coordinates like this

x8.x cosux2z sin ux2x00.x2z sin ux2x00,

y8.y cosuy2z sin uy2y00.y2z sin uy2y00, ~B2!

z8.x sin ux1y sin uy1z cosux cosuy .

Applying this transformation to the elliptic Gaussian bea
functionE(x8,y8,z8) in Eq. ~6.12–8! of Yariv,12 we can then
separate it as a product of two terms,Ex(x) and Ey(y),
which we normalize for integration on thexy plane. Thex
component is

Ex~x!5
A4 2/p
Awx

expS 2
~x2x0!

2

wx
2 2

ik~x2x0!
2

2Rx

2 ikx sin ux2
i

2
kz cosux cosuy1

i

2
hxD ,

~B3!

where the beam parameterswx , Rx , andhx are functions of
z8 as for the TEM modes parameters of Eqs.~22!. However,
we have to approximatez8.z in the argument of these pa
rameters, which is necessary for the evaluation of the ove
integrals below. Taking into account also the positionzwx of
the beam waist in thexz plane, we have therefore
o. 23, 15 December 1996
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10276 K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy
wx~z!5wx0A11S z2zwx
zx0

D 2,
Rx~z!5~z2zwx!F11S zx0

z2zwx
D 2G , ~B4!

hx~z!5arctanS z2zwx
zx0

D , x0~z!5x001z sin ux ,

wherex0(z) is the beam displacement in thex direction. The
confocal parameter is related to the beam waistwx0 as usual,
zx05pwx0

2 n(v)/l. Analogous equations can be written f
the Ey(y) function, with different parameterswy0 , zwy
which allow for astigmatism of the input beam. Finally, n
tice that the wave numberk in this equation is the same a
that of the TEM modes we use to evaluate the expans
amplitudes, since we are working in the frequency doma
at fixedv.

Since we have chosen the mode functions to be norm
ized with respect to integration over thexy plane, we can
calculate the overlap amplitudesEi,mn , which give the ex-
pansion of the input wave in terms of TEMmn cavity modes,
by

Ẽi,mn~v!5Ẽx,mẼy,n ,

Ẽx,m5E Em* ~x!Ex~x!dx

5
1

A2mm!p
Aw

wx
E Hm~j!exp~2aj22bj2cm!dj,

a5
w2

2 F 1w2 1
1

wx
2 1

ik

2 S 1Rx
2

1

Rf
D G , ~B5!

b5
w

A2 F2
2x0
wx
2 2

ikx0
Rx

1 ik sin uxG ,
cm5

x0
2

wx
2 1

ikx0
2

2Rx
2

i

2
kz~12cosux cosuy!

1 i Sm1
1

2Dh2
i

2
hx ,

with an analogous equation for theẼy,m terms as integrals
over dy. For the case ofẼx,0 , we are left with an integra
over the exponential term, which is easily solved by comp
tion of squares to put it in standard form. The result is

Ẽx,05A w

awx
expS b24a2c0D . ~B6!

Recursion relationships for the higher overlap terms
obtained exploiting the properties of the Hermite polynom
als ~Ref. 32, p. 531!. Using the relationship
Hm11(j)52jHm(j)22mHm21(j), it is easy to show
J. Chem. Phys., Vol. 105, N
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Ẽx,m115
1

A2m21~m11!!p
Aw

wx
E jHm~j!km11~j!dj

2A m

m11
e22ihẼx,m21 , ~B7!

where we have introduced for convenien
km(j)5exp(2aj22bj2cm), with the simple property
km115exp(2ih)km. Using alsoHm8 52mHm21 and integrat-
ing by parts, one can show that

E jHmkm~j!dj5
m

a E Hm21km~j!dj

2
b

2aE Hmkm~j!dj. ~B8!

Substituting this into the previous equation, we find the
cursion relationship

Ẽx,m1152
b

a

e2 ih

A2~m11!
Ẽx,m

1S 1a21DA m

m11
e22ihẼx,m21 . ~B9!

Since this gives the correctẼx,1 if we useẼx,2150, one can
calculate allẼx,m starting from theẼx,0 given before. If one
correctly propagates alongz the parameters both of the inpu
beam and of the cavity modes, one can verify that
Ei,mn(v) coefficients are invariant in value, as expected.

Using these relationships, it is possible to calculate
full set of Ẽmn overlap coefficients for the coupling of a
arbitrary input pulse having a Gaussian transverse profile
a straightforward extension of the present method, the c
of an arbitrary input with a Hermite–Gaussian profile~and
therefore any linear combination of such profiles! can be
handled as well.
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