The superposition principle and cavity ring-down spectroscopy
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Cavity ring-down is becoming a widely used technique in gas phase spectroscopy. It holds promise
for further important extensions, which will lead to even more frequent use. However, we have
found widespread confusion in the literature about the nature of coherence effects, especially when
the optical cavity constituting the ring-down cell is excited with a short coherence length laser
source. In this paper we use the superposition principle of optics to present a general and natural
framework for describing the excitation of a ring-down cavi#gardlessof the relative values of

the cavity ring-down time, the input pulse coherence time, or the dephasing time of absorption
species inside the cavity. This analysis demonstrates that even in the impulsive limit the radiation
inside a high finesse cavity can have frequency components only at the natural resonance
frequencies of the cavity modes. As an immediate consequence, a sample absorption line can be
detected only if it overlaps at least one of the cavity resonances. Since this point is of particular
importance for high resolution applications of the technique, we have derived the same conclusion
also in the time domain representation. Finally, we have predicted that it is possible to use this effect
to do spectroscopy with a resolution much higher than that of the bandwidth of the excitation laser.
In order to aid in the design of such experiments, expressions are derived for the temporal and
spatial overlap of a Fourier transform limited input Gaussian beam with theJEivbdes of the

cavity. The expressions we derive for the spatial mode overlap coefficients are of general interest in
applications where accurate mode matching to an optical cavity is required.996& American
Institute of Physicg.S0021-960606)01847-9

I. INTRODUCTION of physical systems having linear response are mathemati-
cally equivalent, since they are uniquely mapped into each
In the last few years, cavity ring-down spectroscopyother by a Fourier transformation. Given this equivalence,
(CRDS has been applied with increasing frequency to aone is free to choose the most convenient description for the
number of problems, allowing highly sensitive absolute abproblem at hand, as the final results will not depend on this
sorption measurements of weak transitions or rarefie¢hoice. However, the frequency representation has the gen-
species® Very briefly, CRDS uses pulsed laser excitation eral advantage that the spectrum of the “output” of a passive
of a stable optical cavity formed by two or more highly device can be simply written as a system response function
reflective mirrors. One observes absorption by moleculesimes the spectrum of the “input.” In contrast, the general
contained between the mirrors at the laser wavelength by thigme domain system response must be expressed as a convo-
decrease it causes in the decay time of photons trapped in thation integral of the input with a time dependent system
cavity. Absorption equivalent noise as low asresponse function. For an optical cavity, “input and output”
~3-10 *%cmy/Hz has been demonstrated, and in principle,are the electromagnetic fields arriving from the optical
several orders-of-magnitude-further-improvement is possource and going towards the detector, respectively. In
sible3® CRDS, one may have to deal with input laser pulses that are
In several of the recent publications on this subject, weshort compared to the light round trip time inside the cavity.
have detected a diffuse belief that the behavior of an opticaln this limit, it is clear that destructive interference phenom-
cavity under impulsive excitatiotas in CRD$ is to be con- ena among the different time components of the injected
sidered radically different from that in presence of continu-light should be negligible. More simply, after a pulse is par-
ous wave(cw) radiation. This impression has been confirmedtially transmitted through the cavity input mirror, it does not
by direct discussion with different authors. The purpose ofspatially overlap or interfere with itself as it “rings down”
this paper is to clarify the situation by presenting a rigorousinside the cavity. Therefore, it might appear more convenient
analysis of the excitation of an optical cavity that is valid to use the time domain representation to treat CRDS. It turns
over the full range of parameters that are likely to be ofout that the frequency domain analysis of the light fields
importance in CRDS. Further, the framework introducedinside and transmitted by a ring-down cavity is quite simple
here may be useful in the design of new experiments. and of general scope. No restrictive assumptions on the pulse
The problem can be summed up as follows. Time do-duration and bandwidth, the absorbing transition linewidth,
main and frequency domain representations of the dynamiasr the cavity quality factor are required. For the case of nar-
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row absorption linegwhich have long dephasing timeshe  transmittivity (as in the uy. In such cases, one must go be-
frequency domain analysis is substantially easier than treafond linear response theory and the superposition principle
ing time dependent response functions and sample reshould be used with caution.

radiation as would be required for a proper time domain

treatment. One of the conclusions of this analysis is that no

absorption is possible even in the short pulse limit when theh THE SPECTRUM OF LIGHT INSIDE AND

frequency of a narrow absorption feature falls between tWGrR ANSMITTED BY A MODE MATCHED RING DOWN
cavity modes. For complementarity we also givéess gen-  cay|Ty

eral time domain treatment of this important problem, which
obviously reaches the same conclusions. This result was pre- Consider a ring-down cavitfRDC) formed by two mir-
viously obtained by Zalicki and Zarebut then recently con-  rors with radius of curvatur®., separated by a distante
tested by Scherest al.’ (which must be< 2R, to have a stable cavity). We define

The only simple but powerful principle to be applied in t,=2L/c, the round trip time of the cell, whereis the speed
the frequency domain analysis is that of linear superpositio®f light in the medium between the mirrors. For simplicity,
of the effects produced by the different frequency compowe will assume that the mirrors have identical electric field
nents in the incoming fiel We will show that the standard reflectivity —.72 and transmittivity.7. The results derived
spectral response function of an etalon can be applied regarB€low are easily generalized to the case of assymetric cavi-
less of the temporal profile of the input field. While we ex- ties and the results are qualitatively the same. If the mirrors
pect that many readers will find this result to be so obviougvere infinitely thin, continuity of the electric field would
as to not require an explicit derivation, the CRDS literature isgive the relationship2+.7=1 between these complex
rife with statements that contradict this view. Since thequantitiesi' The reflections and transmitions of the multiple
comblike structure of this response function reflects the pressurfaces inside dielectric mirrors can be combin@dth
ence of cavity resonances, the cavity mode structure can H@opagation phase and absorpliarto a single effective fre-
considered as a fixed characteristic of the system, and not &lency dependen? and.”” (an application of the superpo-
something that builds up only if the excitation coherenceSition principlg, as long as one is outside of the region of the
time is sufficiently long compared to the cavity optical round coating. However, this treatment will not yield a continuous
trip time, as stated in several recent publications. One muglectric field, since this solution is not appropriate inside the
be careful not to confuse interference in the time and in thdnirror coatings where one is beyond some surfaces and be-
frequency domain. Even if the pulse injected into the cavityfore others. The more familiar intensity reflectivity and trans-
is such that its time components do not overlap and interfereNittivity are given byR=|.72|* and T=|.71. For now, we
the multiple reflections from the cavity mirrors still result in Will assume that we can treat and.”” as constants over the
destructive interference for those frequency components d¥andwidth of input radiation to the RDC. Let us consider
the pulse which do not overlap any cavity resonances an@Xxcitation of the RDC by light of arbitrary electric field
constructive interference of those that do. Correct prediction&i(t), as measured at the input mirror of the cavity. We will
of the cavity behavior in different situations follows natu- also initially assume that the radiation is mode matched to
rally if one thinks in terms of the cavity resonances in fre-the TEMy, mode of the cavity. In these conditions the trans-
quency space and the associated spatial mode strutture  Verse beam profile is stationary and we can treat the problem
gitudinal and transversgin physical space. as one dimensional along the cavity optical azisBelow,

Contrary to what has been suggested in the CRDS literawe Will consider the effects of excitation of higher order
ture, one of the most interesting consequences of our consikansverse modes. We can calculate the electric field of light
erations is that it is possible to turn the high finesse modéeaving the cavity by adding up all paths that lead to output,
structure of the ring-down cavity to a tremendous advantagevhich make 1, 3, 5, etc., passes through the cell. The light
We will show that one can use CRDS with a spectral resomMaking one pass has an amplitude fE;(t—t,/2) at time
lution much higher than that of the pulsed laser source. Id. Each additional round trip through the cell changes the
order to aid in the design of such experiments, expressiongmplitude by a factor of2? and leads to an additional retar-
are derived for the temporal and spatial overlap of a Fourieflation oft,. Summing the contribution of the possibly infi-
transform limited input Gaussian beam with the TEM nite number of passes leads to the intracavity electric field,
modes of the cavity. E(z,t) at positionz and the output electric fiel&(t) (mea-

A note is warranted about the application of linear re-sured outside the output mirror a¢tL),
sponse theory to CRDS. As it has already been nb&gkn

in presence of intense and short laser pulses, nonlinear ef- E(zt)= 2 ‘Z%Z“Ei(t— z+2nL)

fects such as the saturation of molecular transitions are usu- n=0 c

ally negligible in CRDS. This is principally due to the strong 2n+1)L—z

attenuation of the input laser pulse upon transmission of the —7%?2“*1Ei(t— —) (1)
cavity input mirror. We would like, however, to warn that c

there may exist special conditions in which nonlinear effects w
may become relevant, specifically for very strong transitions Eyt)= Z T2HPE (t—(n+ bt )
and a ring-down cavity employing mirrors of substantial R = ' 2
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We can cglculate the spectruﬁn th? angular frequency ence time(either short or long compared tg). This is, of
) of this field by computing the Fourier transfofT). For  course, a straightforward consequence of the superposition

light transmitted by the cavity we have principle of linear optics, which states that the optical
1 throughput at each frequency can be calculated separately,
Ey(w)= _f Eq(t)exp—iwt)dt and is independent of any other spectral components of the
V2 wave®®
o In their recent paper, Scheret al.” make the claim “it
_ 1 f S 727E (t—(n+ b)) seems intuitively more reasonable that the onset of coherent
V2w J n=0 effects should explicitly depend upon the coherence length

of the light, since if the phase of the overlapping light is not
preserved, a regular interference will not necessarily occur.
o _ These results underscore the complexity associated with pre-
=, T2 exp(—i(n+ Hwt,)Ej(w) dicting the behavior of optical resonators which are injected
- with pulsed laser light, and the subsequent limitation of ap-

Xexp —iwt)dt

S
o

i _ o plying cw—based model to the pulsed regime.” The deriva-
=77 ex;:< - Ewtr) Ei(w)E [. 722 exp(—iwt)]", tion presented above demonstrates that this claim is incon-
n=0 sistent with the superposition principle of optics. The
i 3 coherence length of the input pulse appears in our analysis as
_ T? exp{ - Ewtr> part of E;(w) and only affects the relative excitation of dif-

Ei(w). ferent resonance modes of the cavity.

The following considerations might help to further
Above,Ei(w) is the FT of the input radiation. The output clarify pulsed excitation of a.n.etalon. In the case of an im-
spectral density,l (), of this light is proportional to Pulsive Ei(t) shorter thart,, it is clear that there is no de-

Eow)= 1- 77 exp(— i wt,)

|Ey(w)|2, which gives structive interference of the temporal components of the
) pulse. This is the case if dispersion effects are not suffi-

| ()= T (o) @) ciently strong to make the pulse duration become longer than

© (1-R)2+4R sit(lot,—0) = t, before the pulse is completely decayed. However, absorb-

_ _ - _ ing molecules inside the cavity do not see a single pulse, but
In this expressiong=arg(-.7), i.e., the phase shift per also its recurrent reflections, with a well defined and constant
reflection of the mirrors. Going through the same analysis foperiodt,. Here, we neglect fluctuations of the cavity length,

light inside the cavity, starting frork(z,t) we find which is a good approximation if we consider that a typical
(1— JR)2+ 4R sirR(k(L—2)— 6) o_ptlcgl dephe_lsmg t|mg'l,'2, is much shorter than mechanical
(w,z)=T _ li(w), vibrations. It is this strict recurrence that produces coherence
(1-R)*+4R sirf(; ot,— 6) effects if the molecular transition, is longer thart,. In the

(5 frequency domain, we have shown that, due to the recur-

wherek=w/c is the wave vector of the light. This shows "€NCeS, the spectrum of the injected light is modulated and
that for a fixedw or monochromatic input field, light travel- this modulation is mathematically represented by multiplica-
ing in both directions inside the cavity leads to standingtion of the'|n|t|al spectrum by the comblike transfer function
waves with near nodes in the limit thRt1. The time av-  Of the cavity.
eraged total intensity at is given by I (w,z)dw. For exci- If we were to select a single one of the pulses in the
tation of the cavity with a pulse short compared tpowhose ~ Cavity ring-down, say by using a fast electro-optic switch, it
bandwidth will be larger than-1#,, this integral will wash ~Would have the same spectrum as the input radiation under
out the standing waves except close to the mirrors. the assumptions made above. Of course, such a switch must
The above equations are essentially identical to the exchange its transmission on a time scale less thaand thus
pression for the transmission of an etalon found in standarill introduce a spectral broadening greater than the spacing
optics texts, such as that of Born and WRef. 13, page between cavity modes of the RDC. The etalon comblike fil-
327). The output spectrum is equal to the input spectrunier convoluted with the spectral broadening produced by the
times a transmission function. For R~1, this intensity switch will just reproduce a highly attenuated version of the
transmission function versus frequency consists of a series dfiput pulse spectrum. Notice that since the optical switch is a
narrow peaks with full width at half maximuntFWHM)  time dependent system, it cannot be represented in frequency
given by Avpy=(1—R)/(J/Rwt,), separated by the free space by simple multiplication by a spectral response func-
spectral range, FSR1/t,, of the etalon. The finesse of the tion, but by a convolution operation.
etalon is defined by the ratio of the FSR to the FWHM and is  The fact that a series of equally spaced decaying replicas
equal to ¢r/R)/(1—R). While Eq.(4) is usually derived by of the same pulse has a spectrum which is different from that
considering an infinite wave of pure frequency, it should beof the single initial generating pulse, is a consequence of the
noticed that we have made no assumption as to the shape pfoperties of the FT. The fact that this frequency spectrum
E;(t), and thus the input can have any pulse length or cohereontains resonances which are closely the harmonics of the
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fundamental 1/ is borne out by the rigorous application of Where we have introduced the “spectral” Green function
the superposition principle given above, but may be also unG(w) (FT of the usual time dependent Green funclifor
derstood in simplefthough less generalerms as follows. If  the frequency response of the cavity. For the spectrum of
t, <ty and we neglect the phase shift per reflection, the relight inside the cavity we have instead

peating pulse is well approximated as a product of an expo-
nential decaying envelope exp((2ty) times a periodic func- |(w,z)
tion f(t) with periodt,. It is a well known property of B o ol
periodic functions that they can be decomposed in a Fourier :T[l_\/ﬁea(z VP “*+4\Re  si(k(L—2)—6)
series af(t)=="__f. exp(2zimt/t). Therefore, we find (1-Ref)*+4Rgq Sin(KL—6)

Xli(w). ®

again that only harmonics of the base frequentyrlust be
present. The effect of the decay is to add a finite Lorentzian

width to these resonances. This is seen in mathematm?rl] order to determine the time dependent intensity of light

terms by taking the FT of the produd(t) X exp(—t/2ty) . : o . :
and recognizing that this equals the convolution of the indi_transmltted by the cavity, which is the guantity measured in

vidual FT's of each operan@Faltung theorem The FT of an CRDS, we must compute the inverse FTER(w). Using thg h
exponential decay is a Lorentzian, while the FT of the Sum;:onvo.lutlon or Faltung theorem, this can be expressed in the
of circular functions exp(imt/t,) is a sum of delta functions ollowing standard form:

8(w—2mmlt;). The convolution then gives a sum of Lorent-

zians whose center frequencies are the harmonicstpf 1/ Eo(t)zf G(t—t")E(t")dt’, 9
which is a good approximation to the comblike cavity trans-

mission function in Eq(4) in the above limit oft,<tj. . ] .

If one looks at the field in the direction of the reflection WhereG(t—t’) is the Green's function, which represents the
from the cavity, one will find both the direct reflection of the Cavity response to a delta function input. For the ring-down
input pulse plus a pulse train lasting a timethat comes cavity, this can be written from the expression above as fol-
from intracavity radiation re-transmitted by the input mirror. IOWS:

In computing the spectrum of this pulse, there will be de-

structive interference for those spectral components of the (t)= i
input pulse which are resonant with those of the re- - 2w) 1- 7% e
transmitted pulse train, leading to “holes” in the spectrum

of the reflected light. This is of course a natural consequenckn this integral, one should keep in mind that k, .72, and

of the need to separately conserve energy for each spectral are all functions of the integration variable We wish to
component. point out that up to this point in the analysis we have made

Let us now relax the assumption that and.7 are fre- no assumptions beyond linearity of optical response, which
guency independent, and allow for the presence of an absorks implied by the use ofi(w) and a(w), and the superposi-
ing medium inside the cell with an absorption coefficienttion principle of optics.
given by ¢(w) and index of refraction given by(w). In As long as the width of each absorption line is much
principle, we could repeat the above calculation directly ingreater than the width of the individual resonan@es, the
the time domain, but then we would need to consider thél', for the optical transition is short comparedtg), each
time dependent response functions of the mirrors and theesonance of the cavity will still have a Lorentzian shape.
re-radiation by the moleculd®ef. 14, p. 49D However, as For realistic parameters at optical frequencies, the transit
long as we remain in the linear response limit, we can exploitime broadening of molecules through the narrow TEM
the superposition principle to look at the reflection and ab-cavity mode will greatly exceed the width of the resonances
sorption of each spectral component separately, which ar@ut it will be much narrower than their separatiohe
just complex multiplicative factors. Adding up the multiple Lorentzian resonance shape implies that the decay of inten-
paths for each spectral component, we find the following forsity emitted from the cavity, following impulsive excitation

7‘267 aL/2e7ikL )
k2L elw(t)dw. (10)

the spectrum of light transmitted by the cavity of a single mode, will be exponential. We point out that this
limit is violated in Balle—Flygare-type FT microwave spec-
Refi( @) =R(w)e™ *“t, troscopy, which is conceptually similar to cavity ring-down,
but where typically theT, due to transit time is long com-
K(w)= n(“’)“’, pared to the cavity decay tinfe.
c In this limit of cavity resonances much narrower than the
T interval over which the other frequenc_y dependent terms i_n
E ()= 7re € E_(w): \/ﬁé(w)ré(w) the expression for the response function change, we can in-
° 1— 72%e “Le kL ™ RS tegrate over each resonance separately. By expanding the

(6) exponential exp{ik2L) to first order around eacl, where
- K(wg)L=mq+ 6, we get a sum over Lorentzian amplitude
T?e | 7 terms for which the inverse FT can be computed. The result-
(1—Ref) %+ 4Ry SIP(KL— 6) (@), ™ ing expression is

lo(w)=
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1 t—t/2 (Ref. 10, p. 302 and thedf/dw term which reflects that
G(t)= —2 A(wq)ex;{ 5 - )) different wavelengths have different average penetration into
V2m' ol @ the optical coating of the mirrors and thus travel different
X exfli wg(t—1,/2)]10(t—1,/2), (11)  pathlengths. The effectivg is given by 1/FSRwhere FSR
is now defined by Eq(15)] for a cavity with dispersion. If
we consider the contribution 1) by the sample absorp-
tion, we see that this will slightly increase the index and thus
t,Ref decrease the mode spacing on the low frequency side of a
ta(wg) = 2(1-Ryp) (12) transition, and the opposite on the high frequency side. Zal-
icki and Zaré suggested that dispersion effects are generally
A(wg)= \/E/teR , (13) negligible for the Wt_aak qbs_orptio_n strengths investigated by
r Reff CRDS. We agree with this if one is observing only the decay
with Rei(w) andk(w) as defined above. Note that due to the ©f €nergy in the cavity, as is typically done, since in this case
small but finite propagation de|ay through the Ca\/ity, Cau5a|.the interference between different excited modes is filtered
ity requires thatG(t) is zero fort<t,/2 rather than just for out. However, if one attempts to model the time dependent
t<0. shape of the train of peaks leaving the cavity, then the small
Equations(9) and(11) demonstrate that the requirement shifts in resonance frequency caused by dispersion must be
on the input source to observe a cavity ring-down is not thatonsidered along with the frequency dependent absorption.
its pulse width be short comparedttg or eventy, but only ~ We have explicitly shown by numerical calculation, using
that the falling edge of the input pulse be short compared t&q. (14) for the case of a Lorentzian absorption line narrow
ty(wg) for the modegy that are significantly excited. Those compared to the input pulse, that the cavity output displays
modes will be determined by the spectrum of the input rathe expected sample free induction deedter the excitation
diation, and(when we consider the effect of higher trans- pulse, only if these shifts in resonance frequencies are in-
verse modes belowthe spatial properties of the radiation. cluded in the calculation. This is an interesting subject for
However, for a typical pulsed laser the total extent in time off,tre investigatiot since changes in pulse shape may be
the input radiation is itself much shorter than the cavity desefyl for extracting information about the sample absorption
cay times. In this impulsive limit, we can neglect the expo-gnectrym on frequency scales between the linewidth of the

nential cavity decay during the input pulse, and if we placgzqer ysed to excite the RDC and the spacing between longi-
the time origin at the input pulse, we can explicitly evaluate

he | Lin Ea(9) using Ea (11 . tudinal cavity modes.
the integral in Eq(9) using Eq.(11) to give Schereret al. state in their papérthat, “In the case of

t—t,/2 simple exponential decay, the cavity does not act as an eta-
- 2ty(wq) lon, i.e., standing waves are not established in the cavity.”

where®(x) is the step functior{=1 or 0 forx>0 or <0,
respectively and

F2n—all2

EMP(t)= }q} A(wq)exp(
_ On the contrary, exponential decay is a natural consequence
X expiwg(t—1,/2))Ei(wg), (14  of the RDC being a high finesse etalon, if it is excited on a

for times greater than the end of the input pulse p{u2. single _cavity mode. More typically, we have mgltiple mode
The result is a sum of damped exponential decays for eachxcitation, due both to the bandwidth of the excnayon source
cavity resonance. Since the electric field has a decay lifetim@nd due to lack of exact transverse mode matching. As dis-
of 2t4, the intensity in each mode has decay lifetimetpf ~ cussed by Zalicki and Zardor multiple mode excitation we
The decay rate, and thus the spectral width, of those res@Xpect in general a multiple exponential decay of the RDC
nances which overlap the sample absorption spectrum wilinless the excited modes have the same Rgs Even in
be increased. Sample absorption lines that do not overlafhis case, the intensity of the decay will not be exactly expo-
excited cavity modes do not contribute to the rate of lightnential, but show modulations due to beating between differ-
intensity decay and are not detectable in CRDS. ent mode frequencies. Beating among longitudinal modes
If we treatn(w) and 6(w) as changing slowly withw (same transverse mode numbensll have periods that are
(thus neglecting dispersion effects due to narrow absorptiosubmultiples oft,. This simply corresponds to the exponen-
lines), the cavity mode spacing is given by tially decaying series of pulses generated by the initially in-
jected light as it rings down inside the cavity. Thus a simple
. (15 exponential decay of the cavity implies that only one longi-
dé . . . .
2L<n(w)+w—) —c— tudinal mode has been excited, which also requires that a
de do standing wave must be produced inside the cavity, in direct
For constantdn/dw and d6/dw, we have equally spaced conflict with the above statement of Schesgral. In most
resonance modes. If in additid® is constant, the pulse in applications of CRDS, however, the difference betwéen
the cavity travels with no change in shape since the effectivandty is large enough that this round-trip beating pattern can
loss and group velocity is the same for all frequencies conbe easily filtered electronically without significantly distort-
tained in its bandwidth. Dispersion changes the velocity ofing the exponential signal envelope which is the sum of the
the wave due to both the (dn/dw) term, which is standard decay of each excited cavity mode.

Cc
FSR=

dn
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Ill. CAVITY RING DOWN WITH A NARROW trix element for the transitionu,;. Let the molecule be at
BANDWIDTH ABSORBER positionz, att=0 and its velocity along the axis of the RDC
bev,. Starting with Eq(8.1-6 in the text by Yariv? and

The paper by Zalicki and Zateonsidered the effect of then using first order time dependent perturbation theory, we
having an intracavity absorption feature with a linewidth nar-find that the coherence between the two states, created
rower than the bandwidth of the laser used to excite they the time dependent electric field is given by
cavity. As long as one is exciting many modes of the cavity
across the absorption line, this leads to nonexponential cavity it -
decay. This has been verified by Jongetaal!’ and more le(t)=e*"°°th7w#zlE(Zo+ v’ t)eot
quantitatively by Hodge®t al® These effects are closely
related to the well known line shape distortions observed in X(p11— p22)dt’, (16)
conventional absorption spectroscopy when the instrumental
resolution is not higher than the width of spectral featureswhere (p11—p20). is the equilibrium difference in popula-
There, the observed sample absorptiotiegrated over the tions between the lower and upper levels of the optical tran-
instrument functiondoes not follow Beer's law for samples Sition. We will assume that the input pulse is shorter than
that are optically thick® For optically thin samples, such ©one round trip timet,. This is done only for simplicity. In
measurements give the correct integrated line Stre@ﬁm faCt, we could divide any arbitrary incoming field in portions
known as the equivalent widththough not the correct peak that are shorter than the round trip time, and the following
value due to instrumental broadening of the line. Hodgegnalysis could be applied to each of these “time compo-
et al’® have demonstrated that an additional complicatiornents” and the results added. We will use Eg) for
can arise in cavity ring-down due to the spectral structure ifE(z,t) for the field inside the RDE' Putting this into the
conventional multimode pulsed lasers. This results in inten@bove equation, we find for the coherence induced by the
sity distortions when the width of an absorption feature isPulse
comparable to the width of structures in the spectrum of the int(t/t)
excitation laser. We anticipate that these effects can be re- =@ oot z' R i2n0 .
moved by averaging ring-down decays observed as th821( )=e =0 p+R€ eXp 1o
modes of the excitation laser are swept to produce a smooth
average excitation line shape. _ n+1/24—i(2n+1)0 i Yz

Another important consideration discussed by Zalicki p-RT e eX[{IwO(l c (n+1)tr”,
and Zare is the relationship between the width of the absorp- 17)
tion features and the FSR of the cavity. They report to show
that the bandwidth of light admitted into the RDC dependa/vherept is the coherence produced by a single forward or
upon the length of the excitation pulse. We think that this isreverse going pulse in the cavity
a consequence of their considering the FT only over a time
interval of the input pulséwhich they took to have a square i 7
wave amplitudg and not of the whole damped series of re- Pt:ng\ﬁ(Pll_ p22)e exp( i""OE)
flections the intracavity molecules interact with. Despite this,
they recognize that the excitation caused by the coherent sum * . Uz
of all the cavity reflections will only excite transitions that Xf B (t)ex;{mo( 1i?)t)dt' (18
overlap one of the excited modes of the RDC. Thus they
reach the same observable consequence as the present andl{e will get constructive interferenc@nd thus net absorp-
sis and one may dismiss the differences in our respectivtion) of the coherence produced on successive round trips of
analysis as largely semantic. the cavity only if g satisfies the following equation with

In a frequency domain analysis of the problem, oneintegerN
should integratdin calculating the FT over the whole time
of interaction. To consider the spectral content of the radia- v, 2w 26
tion field only in a given limited time interval is equivalent to wo( 1i_> - t_r'\hL T (19
employ a mixed time frequency representation. Time and
frequency localized representations are the subject of wavéFhus we will only get net absorption by the sample if either
let transform theory, which is becoming quite an active fieldthe forward or backward Doppler shifted Bohr frequency
of research and application in recent ye&rs. (the left hand side of the above equalicatisfies the same

It is often useful to compare descriptions of the sameequation as a cavity resonarieee Eq(4)]. The cavity acts
phenomena both in the time and frequency domains, thougto produce a multiple-pulse time domain “Ramsey” fringe
they must give the same results. The analysis we will presergattern, as previously noted by Zalicki and Zatecluding a
below is also complimentary in that it focuses on the mol-T, for the optical transition will allow off resonance absorp-
ecules in the cavity, while the earlier treatment focused ortion, but this is just equivalent to considering the resulting
the optical properties of the system. Consider excitation of dine broadening in the frequency domain. Thus we recover
two level system with optical resonaneg and dipole ma- the condition that CRDS is only sensitive to sample absorp-

v
1+ —Z)ntr
c

J. Chem. Phys., Vol. 105, No. 23, 15 December 1996

Downloaded-16-Feb-2010-t0-129.6.144.159.-Redistribution-subject-to-AlP-license-or-copyright;-see=http://jcp.aip.org/jcp/copyright.jsp



K. K. Lehmann and D. Romanini: Cavity ring-down spectroscopy 10269

tion that overlaps one of the very narrow cavity resonancesising a continuous wave laser locked on a molecular transi-
excited by the input radiation, even in the limit of short pulsetion, one could also lock the RDC to a spectroscopic stan-
excitation. dard. Since we can repetitively scan the cavity over one FSR
The spectral selectivity of sample excitation inside aand observe the time when the reference laser passes through
RDC can be shown to be demanded also by the laws afesonance, we can have continuous feedback control of the
thermodynamics. Let us suppose, contrary to what we haveavity length. In this case, one can use the time that the
demonstrated above from first principles, that the RDC doesxcitation laser is fired relative to the scanning ramp to con-
not act as an etalon for short pulg¢er short coherence trol the frequency sampled on any laser shot.
length excitation, and that the full bandwidth of the pulse Thus rather than being a problem, the frequency selec-
enters the cavity and excites all optical transitions that overtive nature of the cavity resonances opens the possibility for
lap its spectrum, as is claimed by Scheeeal It has been a dramatic improvement in the resolution available in pulsed
experimentally demonstrated that spontaneous emission Igser experiments. The combination of this technique with
turned off in a cavity with no mode resonant with the atomicCRDS should dramatically improve both the sensitivity and
transition?? If black body radiation could enter the cavity resolution that can be realized in sub-Doppler spectroscopy.
and excite an atom, but the atom were not able to undergo While this work was being reviewed for publication, we
spontaneous emission, an infinite atomic electronic temperavere informed of an earlier experiment that demonstrated
ture would be produced by interaction with a finite temperathese principles. Teett al*® observed a two-photon transi-
ture heat bath. This clearly would be a violation of the section in atomic sodium inside an optical cavity of modest
ond law of thermodynamics. (=16) finesse. By scanning the length of the cavity, they
The fact that the RDC acts as a frequency selective filtepbserved a transition of width 12 MHz, despite a Fourier
might lead to the erroneous conclusion that CRDS is notransform limit for the input pulse of about 170 MHz. The
suitable for quantitative spectroscopy of high resolutionfound trip time of the cavity used (13 n&as about twice
spectra. This is simply not the case. As Meigral® have the length of the input pulse. The spectral selectivity ob-
shown, the excitation of many transverse modes of the RD@erved in this experiment directly invalidates the model of
will lead to a near continuous spectrum of cavity resonance$;RDS presented by Scheret al’
eliminating this potential problem. We will return to this ~ The next section will consider the spectrum of longitu-
point below. At present, we will show how even with single dinal modes excited by a FT limited pulse having Gaussian
mode excitation of the RDC cell, one need not miss absorptransverse profile. We also need to account for the fact that
tion features. without great care, one will excite multiple transverse modes
The narrow bandwidth of light admitted into a RDC of- 0f the cavity, each of which has its own resonance frequency.
fers a tremendous opportunity for high resolution spectrosThe following section will then consider the excitation of
copy. One has to replace the static length cell considered bjigher transverse modes.
Meijer et al,, Zalicki and Zare, and others, by a cell whose
length can be varied by at least2, (one-half wavelength
which will shift each mode by one FSR of this “etalon.”
Since only light with a bandwidth much narrower than the
excitation laser enters the cell, it is possible to do spectros- Consider the mode matched excitation of a RDC by a
copy with a resolution much greater than that of the lasepulse with center frequency.. For a sufficiently short in-
source used to excite the cavity! Consider a commerciallyput, this excitation will create a traveling pulse inside the
available OPO laser with a bandwidth 6f125 MHz. By = RDC. Neglecting dispersion effects, this pulse will propagate
using a cavity of lengtt. <75 cm, the mode spacing will be back and forth with no change in intensity profile, except for
greater than twice the laser linewidth and if mode matcheda slow attenuation. If dispersion effects are important over
we will primarily excite only one mode. We can then scanthe bandwidth of the pulse, either from spectral changes in
the cavity and observe a spectrum with a full width instru-mirror reflectivity and phase shifts, or from the presence of a
mental resolution of~16 kHz for a cavity decay time of narrow absorption feature that is not optically thin, the intra-
~10 us. In practice, time of flight of molecules through the cavity pulse shape will change with time. In a frequency
laser beam will limit resolution to about 0.1 MHz, 3 orders domain picture, this corresponds to the variable mode spac-
of magnitude better than the FT limit for a few nanosecondsngs described by Eq15).
laser pulse. Such experiments will require interferometric  The most obvious sign that the cell is acting as an etalon
control of the length of the RDC, and tracking the excitationwould be the observation of “fringes” in the transmitted
laser as the cavity is scanned. The latter should be of mindight as the center frequency of the excitation beam is
difficulty, since in this situation, high contrast interference scanned. It is the lack of such a modulation when the input
fringes will be observed as the cavity and laser are detuneghulse is short compared tg that appears to have produced
allowing for standard feedback techniques to be used. Mairthe belief that a RDC does not act as an etalon in the impul-
taining the RDC to interferometric accuracy, sayl MHz,  sive limit. However, it is well known that one does not ob-
can, in principle, be achieved in several ways. One can purserve interference fringes if one excites an etalon with broad
chase a temperature stabilized etalon with such passive staandwidth light. This is just a consequence of the transmis-
bility, which could be modified to act as a cell for CRDS. By sion spectrum being periodic with period equal to the FSR.

IV. FRINGES VERSUS THE EXCITATION PULSE
LENGTH
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Thus if the input pulse spectrum is much wider than one
FSR, the expected interference structure is “washed out,”
and the transmission coefficient becomes constant with value
T2/2(1—R), independent of the center frequency of the in-
put light pulse.

What happens if the input pulse length is closer to the
value of the cavity round trip time? Zalicki and Zare consid-
ered this question for the case of square wave excitdtion.
We presently consider a FT limited Gaussian shaped input
pulse with an intensity FWHM equal tat, since this pro-
vides a better model for many real lasers. The frequency
spectrum of this input pulse will also be Gaussian, with a
FWHM equal to 0.44At (Ref. 24 p. 334 In the limit of a

Injected Energy / Incoherent Value

high finesse RDC, each resonance will have a nearly Lorent- | . . . . . ]
zian shape with peak transmission equal to 00 05 10 15 20 25 30
[T exp(—al/2)/(1-Re)]?, and FWHM equal to 1/2ty, Pulse FWHM / t

where tg=n(wq)L VRei/[c(1—Rer) ] is the decay time for
the gth resonance mode arRLs=R exp(~a(wy)) is the ef- FIG. 1. Plot of the ratio of the predicted transmission divided by its inco-

fective reflectivity for that mode. herent excitation value for the pulse frequency centered on a cavity mode
Cavity resonances will be narrow relative to the spectralsolid ling) and for when it is halfway between cavity modesshed ling

structure of the input pulse as long as the pulse duration is

short compared tay. Therefore, in order to calculate the

total intensity transmitted by the cavity, we can treat theNext neighbors is given by efp(wAt/Jin 2t,)%]. When
resonances as delta functions. This approximation will brea®t=0.3,, this ratio is already only 0.028, while for
down, because of the long tails of the Lorentzian resonancedt=tr, this ratio is 6.6 10". Thus very selective excitation
when the width of the input pulse is much narrower thanof a transverse mode matched RDC is possible with FT lim-

cavity mode spacing, i.e., whext>t,. For each resonance ited pulses with FWHM of-0.3; or longer. Below, we will
modeq at frequencyw,, from Eq.(4) we find that the en- S€€ that the need for mode matching can be relaxed in case of

ergy transmitted by the cavity is a confocal(or more generally re-entrantavity configura-
tion.
3—3 [ 7 At T2
a9 N 1o 7T 2(1-_R) V. EFFECT OF HIGHER ORDER TRANSVERSE
In2 t 2(1-R) MODES

2
Our analysis up to this point has been one dimensional,

m At (0g— )
X ex \/ﬁ t,  FSR which is appropriate for light perfectly mode matched into
the RDC. In order to consider the excitation of a RDC pro-

whereJ, is the energy in the input pulse. The total transmit-duced by a beam with an arbitrary spatial distribution, we
ted energy is obtained by summing over all the resonancenust again use the superposition principle, but now in space
modes. In the limit that the input pulse is short compared taather than time, expanding the input wave in a set of cavity
t, the sum over modes can be approximated by an integrahodes. Due to the finite transverse extent of an open optical
which gives just the factor of?/2(1—R.q) expected for cavity, its resonances, unlike those of the closed electromag-
incoherent excitation of an etalon. In Fig. 1, we plot the rationetic cavities commonly treated in textbooks, need not be a
of the predicted transmission divided by this incoherent excomplete, orthogonal séRef. 24, p. 568 However, stable
citation value for the pulse center frequency exactly resonantavities with small diffraction losses have resonance modes
with a cavity mode and for when it is exactly halfway be- closely approximated by Hermite—Gauss functions up to
tween cavity modes. The ratio of the two curves is the exrelatively high transverse mode orders, which do have this
pected fringe modulation as the excitation lag@rthe RDC  attractive propertyRef. 24, p. 568 We will derive the gen-
length is scanned. Significant modulation is observed whereral cavity output, for an arbitrary input pulse, by expansion
At is greater than-0.5;,. This can be rationalized when one in both frequency(for the time dependengeand cavity
remembers both that the Gaussian has a tail and is not modes(for the transverse spatial dependentkhile the fol-
square wave(where there would be zero modulation for lowing discussion is for the response of the cavity calculated
At<t,) and also that interference is given by overlap of theat its output, the same treatment can be applied to the field
electric field, which has a FWHM/2At. When one recalls produced inside the cavity and leads to similar results.
that for a Gaussian pulsetA v=0.44, we see that when the In the paraxial approximatiofsmall propagation angles
FWHM of the pulse is half the cavity round trip time, the and deviations from the optical axighe Maxwell equation
spectral width has a FWHM only 0.88 as large as the spacinfpr wave propagation in a homogeneous dielectric medium
between the longitudinal modes. When the laser pulse is ceffirefraction indexn(w)] has a set of solutions known as the
tered on a mode, the ratio of the mode excitation to that of itdransverse electro—magnetitEM) modes->?*whose order

: (20
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is indexed by two positive integersn(n). The spatial field stable symmetric cavitids<2R.. While z, for the TEM set
amplitude for these modes is written in terms of Hermite—of cavity modes is frequency independent, note that this is

Gauss functions not the case fow3= AZg/ mn(w).
We now consider an input field of angular frequeney
L (XY Zw)= 1 ( \/EX) that has a spatial distribution that just matches the TEM
S 2™ T animiw(z) T \W(2) mode of the field. We denote the amplitude of this field by
N T T, Ei,mn(®). Similar to the one dimensional cafgqg. (7) and
< H N2y '{ _xTHYT k(X +y) following], we can sum over all round trips through the cav-
"w(z) w(z) 2R(z) ity to arrive at an output electric field, which will still match
the TEM,, , in the perpendicular plane and have an ampli-
—ikz+i(m+n+ 1)77(2)). (21)  tude given by
Eo,mn(w): VZWGmn(w)Ei,mn(w)y (26)

These monochromatic waves have wave vector
k=n(w)w/c alongz, and time dependence ei@l). They  Where
are characterized by a transverse beam waist ofvg{zg, by

! - 1 ‘77‘*2e—aL/2e—ikL
a radius c_Jf gurvature of th_e phgse fromRgz), and by a Gmn(®)= 1= 7% o g T 2L (27
phase shift induced by diffractiom(z). For free space V2 L7 mnl
propagation along the paraxial azsthese TEM parameters 3
change as follows: Koyl =2(M+n+ 1)arctam [—— (28)
, (2R.—L)
-z
w(z)=wg\/ 1+ W) , The different transverse amplitude distribution of each TEM
20 mode may result in different losses due to spatially varying
2, \2 defects in the mirrors surfaces and to their finite size. We
Ri(z2)=(z—z,)| 1+ p—— ) , (22)  account for this by using mode dependent reflectivities
v Pmn(w). -
z—z Like in the one dimensional casg,,(w) is a comblike
7(z)=arcta , transmission function, and we can identify the longitudinal

_ _ ~ cavity resonances with the peaks of this function, and their
with z,, the focal point of the wave, where the beam waistdecay rate with their width. The functional dependence of
reduces to its minimurivg. Once the value oo is given, G () is similar to that for the one dimensional case of Eq.

the “confocal length”z, is also determined (7), but the position of its resonances has a shift dependent
ngn(w) on the T_EM order, due_ to .the;(z) term in Eqg.(21). The
Zg=—"7—— (23)  frequencies of the longitudinal resonances are found by the

A solutions of the following equatiofobtained numerically by

At fixed frequencyw, fixedw, (or equivalentlyzy) and fixed  iteration
R; (or z), the set of TEN,, modes form a complete orthogo-

nal and normalized set of functions wq+ 6+2(m+n+1)

wmnq: n(wmnq)l-

f 2 (XY,2,0) Zn(X,Y,2,0)dXAY= 8 mnrn, L ,
(24) X arcta (ZRC——L) , (29

> LhAX Y Z,0) E (XY, z,0)=8(x'—X)8(y' —Yy).  whered is the phase change upon reflection, introduced ear-

mn lier. In the time domain, each mode will have an exponential
In the axially symmetric case, each mode is degenerate wittecay with a time constartfor powep given by
respect to polarization.

If we wish to consider light coupled into an optical cav-
ity made of two mirrors, then one should select the beam

parameter so that the radius of the beam just matches thgith R, .=Rumn exp(— a(@mngL). Note that if Ryn(w) is
radius of curvature of each mirror at its surface. For thQ]ot Conétant due to mode dependent loss, we will have a
symmetric cavity considered in hefeoth mirrors with cur-  nonexponential decay even without sample absorption.

vature RC, as bEfOI'Q?, this condition |mpI|es that the beam We will now consider excitation of a Cavity by an arbi-

focus is at the center of the cavity and the confocal lengthrary input pulse whose electric field is given by
is'? Ei(x,y,z,t). Using the superposition principle, we can ex-

1o 1T pand Ei(x,y,z,t) in terms of the set of functions
20=2V(2R= L)L (25) Emn(X,Y,Z,w) for which we have just presented the trans-
More general expressions can be found in the text bymission properties. The total output field,(x,y,z,t) can
Yariv.'? The condition thatz, is real defines the range of then be written as

trRmn,ef'f
tgmn(@mng) = 201=R. o)

mn, eff)

(30
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Eo<x,y,z,t>=§n f G ®)Ej mn( @) Zmn(X,Y,2,0) €' dw, Eo<x,y,z,t>=m2nq Aol @) Eimol @mng Zmn(X,YsZ, ©mng)

(3D
Xexp{i(t tr) exp( t_tr/z) (34)
~ ——lw — ,
whereG,,,(w) is given by Eq.(27) and 2)mnd 2tgmn
~ 1 »
Eimn(@)= ﬂf f f Cmn(XY.Z,0) where the factoA,,(w) is given by Eq(13) with Ref ;p in
_ place ofRqs andty mn is given by Eq.(30). For brevity, the
XEi(x,y,z,t)e”'“'dx dy dt (32 dependence om,nq has been left implicit for several of the

_ parameters. The output intensity of the cavity will contain
Ei mn(w) is the “excitation amplitude” of the mode with beating between different excited modes. However, if one
transverse ordemn and frequencyw. Note that we do not detects the total light intensity crossing the output plane, the
have to specify at which value afthe integral is evaluated orthogonality of the mode functions eliminates beats be-
at, due to the superposition principle for space propagationtween modes with different transverse mode numbers.

If we assume that the input field has a small fractional  The fraction of input pulse energy coupled to a particular
bandwidth, which allows one to neglect the frequency depenTEM,,, mode is given by the squared magnitude of the mode
dence of the TEM parameters, we can derive another expresverlap amplitudelEiymnF, times a spectral density factor,
sion for the time dependent cavity output decomposed ovewhich for the case of an input pulse with Gaussian temporal
the spatial TEM modes. For each mode, the cavity responsgrofile was given by Eq(20), which is easily generalized to
is then a convolution of the corresponding Green functiorthe present case. Thus together with the results of Appendix
with the time dependent amplitudg ,,(t) for that modé® B, we have given explicit expressions for the distribution of

excitation of different modes of an optical cavity for an input
o s k(e pulse of Gaussian shape in space and time, with alignment
EO(X'y’Z’t):% Zm(X.Y,z,0" el restricted by the paraxial conditions and of duration short
compared to the cavity decay time. The present results can
g N be easily extended, using numerical integration, to treat input
XJ Gm"(t t c Eimn(t)dl, (33 pulses of arbitrary temporal and spatial shape.

As seen by Eq(34), the output signal in CRDS is only
wherew' is the center of the field bandwidt,(t) is the  sensitive to the sample loss at the frequencies of excited
inverse Fourier transform @&, (w) given by Eq.(27); and  modes of the cavity, and thus the spectrum of the cavity is
E;.mn(t) is the inverse Fourier transform é‘i’mn(w), important to the design and interpretation of CRDS. We can

We leave to Appendix A the discussion of some speciasee that the longitudinal modéer fixed m,n) are separated
cases and examples. An important case is that of a beahy angular frequency2/t,, while transverse modéshang-
which is separable as the product of space and time depeitg m+n, with q fixed) are separated by (@)
dent functions. A special separable case is when the spatiad arctan/L/(2R—L). The full spectrum of the cavitysay
component of the beam is Gaussian and astigmatic, with afor an incoming plane wave that excites all TEM ordenwl
bitrary spot sizes, focal positions and axis, but only slightlybe continuous if the ratio of these spacings is irrational. If it
tilted with respect taz as required by the paraxial approxi- is rational with the transverse spacing to the longitudinal
mation. Then, recursive analytic expression exist and are depacing equal td/N, the spectrum will consist of a series
rived in Appendix B for the amplitude excitation coefficients of resonances with frequencies exactly spaced byN)(
in terms of the beam parameters. These results allow one ie., exactly a factor oN less than the separation of the
model the coupling of a laser operating on a single TEM TEMgg modes. It is easily seen from above that for a confo-
mode to an external optical cavity. In addition, the method ofcal cavity L =R.), the transverse mode separation is exactly
the Appendix B can be extended to input beams with highehalf of the longitudinal modes, giving a frequency spacing
TEM order, and the expressions derived could be applied tbetween resonances of 1/2 However, for other values of
the more general case of a beam which is the superpositiaqthe spacing we can get other low order rational ratios. For
of TEM modes characterized by the same arbitrary paramexample, ifL=R./2 or 3R./2, we will get a frequency spac-
eters. This would be adequate for modeling the cavity couing of 1/3,, i.e., just 3 times as dense as the Tfvhodes.
pling of a nonseparable beam produced by a laser which is For general multiple mode cavity excitation, the trans-
not operating on a single transverse mode. verse profile of the light intensity changes shape on each

Let us consider the case when for eaoh the longitu-  pass of the cell. For a rational ratio as discussed above with
dinal resonances i&,,,(w) are narrow with respect to other divisor N, the intensity will be exactly periodigexcept for
spectral widths of the problem. In the time domain this im-an overall damping factprafter N round trips. This is the
plies that the variation of the field is faster than the cavityseparation condition for the multipass re-entrant cavity con-
decay times. Then, the same result as in Bd) can be figurations used and discussed by Herrigtial 2°
obtained here and E@14) can be generalized to Meijer et al® suggested that one could use a nonconfocal
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cavity to achieve an essentially continuum excitation specHodges, Looney, and van Z8&In a series of careful mea-
trum and thus eliminate the expected distortions of the cavitgurements, they have recently verified that CRDS cells have
ring-down spectrum caused by a static cell acting as a frethe expected etalon transmission properties even when ex-
quency filter. They used slightly diverging input radiation cited with laser pulse length a few times the cavity round trip
(incorrect sign ofR; compared to the mode matched ga®e  time, directly contradicting the claims of Schesdral.
insure that a wide range of transverse modes were excited, For certain applications of cavity ring-down, especially
giving a dense spectrum. We would like to point out that on€or obtaining spectral resolution higher than the input laser,
must be careful not to inadvertently use a mirror separatiothe mode coupling, or cavity mode structure, or both, will
that leads to a rational ratio unless the divisor is large enoughave to be carefully controlled. Mode matching requires con-
that the resulting “picket fence” spectrum has spacingstrol over four experimental variable&t) The position of the
much smaller than the linewidths in the spectrum one wishemput beam relative to the optic axis of the etald®) the
to observe. relative input angle(3) the spot size; an@) the radius of
We would also like to mention that the clever solution of curvature. Precise adjustment of the first two is a routine part
Meijer et al® comes at a cost of reduced spatial resolution inof most optical setups and is easily optimized. Control of the
CRDS. This is clearly undesirable when the method is usedsecond two requires the equivalent of a ZOOM telescope
as by Zalickiet al.® to observe the spatial profile of a spe- lens. In addition, if the laser source is not operating on a
cies’ concentration. A perhaps more general problem is thattable TEM, mode, spatial filtering will be needed to obtain
it increases the required size and spatial uniformity of thea Gaussian beam profile that can be matched to the cavity
coatings of mirrors used for CRDS. A multiexponential ring- TEMyy mode. Monitoring the size and shape of the intensity
down signal will result from excitation of modes with differ- emitted from the cavity, say with a caméfsappears to pro-
ent transverse profile if the different portions of the mirrorsvide a direct diagnostic to allow the optimization of the input
surfaces have different reflectivity. Such variations in reflec-coupling. TheSuper Cavitya high finesse spectrum analyzer
tivity may be caused also by dust or dirt. Further, changes irsold by Newport Co., uses a near planar cavity<R,.); in
the distribution of modes excited as the laser is scanned wilbur laboratory we have achieved90% excitation of the
lead to variations in the “background” loss of the cell which TEMg, mode of such a cavity by using a GRIN lens at fixed
will translate into a poor zero absorption baseline. It is alsadistance from the cavity to focus the output of a single mode
important to ensure that the entire cross section of the beafiber?® One can thus expect high selectivity with careful
is collected and detected to prevent transverse mode beatimdjgnment of a near diffraction limited beam, which for most
from distorting the cavity ring-down. We wish to emphasize pulsed lasers will require spatial filtering. Likely, it will be
that these are surmountable issues in most experiments, boore convenient to use a confocal or another “degenerate”
they should be considered in experimental design. mirrors separation. Note, however, that a confocal cavity is
The experiments described by Scheeerl” have been unstable if one has any finite difference in the curvature of
interpreted by them as demonstrating that a RDC does ndhe two cavity mirrorst®?* The precision required for the
act as an etalon even for input pulses with a FWHM twice asnirror separation will increase linearly with both the number
long as the cavity round trip time. They base this in part onof transverse modes excited and with the ultimate resolution
the lack of modulation in the observed cavity transmission asequired. We note that for exactly coaxial excitation of the
a function of the center frequency of their near transformcavity with a symmetric beam, one will only get excitation of
limited laser. As is shown in Fig. 1, very strong fringe modu- TEM,,,, modes with even values @f andn, and thus have
lation is expected for a transverse mode matched cavitan effective transverse mode spacing twice what is otherwise
when the input pulse length is as long as twice the cavityexpected.
round trip time. However, these authors make no mention in  Thus in applications of CRDS one is often interested in
their paper of any attempt to mode match the radiation, noeither deliberately exciting a known range of cavity modes or
to carefully adjust the mirror separation for a re-entrant conin carefully exciting only the lowest order one. It is then
figuration. Thus it is almost certain that the reported lack ofuseful to have expressions for the excitation of different
fringe modulation is a consequence of the effects previouslynodes expected for a given input beam. In Appendix B, we
predicted by Meijeret al® The interference structure has give an analytic expression for the overlap of a Gaussian
been “washed out” due to simultaneous excitation of manyinput beam with arbitrary parameters and alignment with re-
TEM,,, cavity modes. This also naturally accounts for thespect to the TEM, mode of the cavity, and a recursion rela-
fact that they observed a methane spectrum with the samé@nship that allows the overlap with higher order modes to
relative intensities and linewidths when observed with differ-be calculated as well. These general formulae are sufficiently
ent length cavities, even though the longitudinal mode spacsomplex that it is difficult to directly gain insight by inspec-
ing of the shorter cavity was almost twice the observedion of the results, though they can be easily programmed
FWHM of the methane lines. Scherer al. claim that their and plotted for different ranges of parameters. In Appendix
results contradict the analysis of Zalicki and Z&r@he A limiting examples are considered that will likely be useful
present work demonstrates that the experimental results @stimating precision needed for a specific experimental ar-
Scheretret al. are completely in accord with the prior predic- rangement.
tions of Meijeret al, and in no way contradict the results of We wish to close this section with a brief discussion of
Zalicki and Zare. The same conclusion has been reached Wiffraction effects in optical cavities used in CRDS. The
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guantitative theory of these effects is rather complicated andulating the transverse mode expansion amplitudes of an ar-
we refer the reader to the text by Siegrffafor a good in-  bitrary input Gaussian beam that is coupled into an optical
troduction to this subject; the material given below is takencavity.

from this source. It is interesting that the simple first order ~ While ring-down cavity spectroscopy is a technique that
estimate of mode losses, by calculation of the fraction of ayields good results with a very simple setup, a thorough un-
given Gaussian mode that “spills over” the mirrors, substan-derstanding of the properties of resonant cavities is necessary
tially overestimates the diffraction losses. The low orderfor optimal design of the experiment and for this technique
resonant modes distoftpull in their skirts™), falling below  to be used for quantitative absorption measurements of spec-
the Hermite—Gaussian function near the mirror edge, therebia with narrow lines.

effectively reducing diffraction losses. Diffraction losses are

typically characterized by the dimensionless resonator

Fresnel numberN;=a?/(L\), where 2 is the diameter of ACKNOWLEDGMENTS
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APPENDIX A: TRANSVERSE CAVITY MODE
VI. CONCLUSION EXPANSION

. . A good approximation if the input radiation derives from
We have demonstrated that contrary to widespread belleé laser operating on a single transverse mode, is that the
coherence effects are important in cavity ring-down spectro heam has a separable space and time 'dependence
copy in presence of narrow absorption lines, independent (SJZ '

. is(X,¥,2)Ey(t). Then, if we assume that the TEM param-
the physical or coherence length of the laser pulse used tgters do not change appreciably over tiaited) bandwidth
excite the cavity. We find that the superposition principle of

! . X of the input field, we can deal explicitly with the fast
optics provides a natura_l and convenient framework for preZjependent term (exp{ik?) in the TEM functions and find
dicting the effects of cavllty.excnatlon, .regardless of the SPEC3p ot the projection coefficients are also separable
tral or spatial characteristics of the light source. Using the

frequency domain representation we have shown that fi ~ (KK . ,
mir?ors o¥high reflecti?/ity the radiation field inside the cav-OEﬁ?r’lJn(w): Ei(w)e'® )Zj Eis(X,Y,2) Znn(X,y,2,0")dx dy
ity will have negligible spectral intensity outside the cavity ~ . ,

resonances. This gives a simple and general solution to the = EjsmnEit(@)e'* )7,

problem of absorption lines narrower than the cavity free

spectral range, since it indicates that absorption will be obE® (t)=Es mnEit
servable only when the lines overlap the cavity resonances.

We have shown that the same can also be obtained in thehere theE; ,, are practically constants, arid =k(w").

time domain representation by using first order time depenUsing these results, one can write somewhat simpler expan-
dent perturbation theory to account for the total molecularsions in TEM modes for the cavity response

excitation produced as an input light pulse bounces back and

forth through the cavity. The problem of missing absorption EgEP(X,y,z,t)ZE EismnZmn(X,Y,Z,@")

lines in cavity ring-down measurements has been previously mn

considered;” but we have here discussed in more detail the _ _

advantages and possible limitations of the proposed solution X J Gmn(@)Ey(w)e™dw (A2)

of using high order cavity mode excitation. In addition, we

have argued that the frequency selectivity of a ring-down ik 2

cavity can be turned in a tremendous advantage, opening the - % Eismn®mn(X,y,2,0")€

possibility of using this technique to observe spectra with a
resolution much higher than that of the excitation laser. Fi-
nally, we have derived general analytic expressions for cal-

(A1)

Zn
t+ —
C

X f Gumn(t—t')Ex(t)dt’. (A3)
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We will now consider two special cases which we believeplex and appear much more difficult to use than the simple

will be helpful in selecting experimental parameters. recursion relationships given below. Further, neither of these
First, we would like to consider the case of input radia-previous works dealt with the case of a cavity or input beam

tion with the same spot size and curvature as those of theith astigmatism, which is easily treated by the present ap-

cavity TEMy; mode, but having its propagation axis mis- proach.

aligned by an angle of, with respect to the cavity axis, and The z axis of our coordinate system is defined by the

displaced by a distance & in the focal plane of the cavity. optical axis of the cavity. For the case of a symmetric cavity,

We assume the angular and displacement misalignments atfee origin of the coordinate system is located at its center.

in the xz plane. Using the analogy to a harmonic oscillator,We will pick an arbitraryxy plane(a fixed value ofz) to

this is equivalent to initial preparation of a Glauber coherenttompute the overlap integrals, where the cavity TEM modes

staté!*2with dimensionless phaset, given by are characterized by the spot swwéz), radius of curvature
Ri(z), and phasey(z) given in Eqs.(22) together with Egs.
a:i(ﬁ_ikwo sin 9x)- (A4) (23) and (25). These TEM, modes Canrbe separated as
V2 \Wo products of two components?,(x) and #,(y) [see Eq.
This state will be a superposition of a Poisson distribution 0{21)], with
TEMo modes, with mean valugr|? and a standard devia- 4f5] V2
. T 2X
tion equal to the square root of the mean,|at. Thus to 7, (x)= m( )
strongly excite a range of-K modes, we either need to V2™miw w
displace the input beamK spot sizes off the optic axis, or 2 o
N . o X< ikx i ) 1
misalign the input angle by-K/kwy. For excitation of a xex% — = — =kz+i| m+ = 7,). (B1)
large number of modes, this result will be insensitive to we o 2Rp 2 2

small changes in the spot size or radius of curvature away . . .
For the input beam, we will assume a generic free space

from the mode matched values. . . kB . -

As a second special case, we consider excitation with gll[ptm G‘?‘“Ss""‘” bea In the paraxial apprquatlon, the
Gaussian beam aligned with the optic axis of the cauvity, buf!S of t_h's beam V\_"” have tilt ang_le$< andg in thex an_d
with input values for the spot sizey, , and radius of curva- Y directions. We will take the origin of the beam coordinate

ture, R,, that may not match those; andR;, of the cavity fystegw at t_?_e p?r']nb%o’yo?l'(?lt()f the ca\gty tco?rdln?t?_ el
modes. In this case, we get for the overlap with the TEM em. By writing the overall tilt as a product of a rotatioh

mode of the cavity the amplitud€,; o, [see Eq.(B6)], around.they axis and. then bwy.arognd the rotated axis,
: and using the paraxial approximation of small angles, one
2wWwy can write the transformation from the beam coordinates

LSRi—R (AS) x', y', Z' to the cavity coordinates like this

X Rfo

Ei,00:

i
W2+ w2+ Eszw
X" =X €0S Oy~ Z Sin O,— Xgg=X—2Z Sin O,— Xqq,

The only higher order modes that will have nonzero overlap

are those with even values for batiyn. The magnitude of y'=y cosfy—z sin 6,—Yyo=y—2Z Sin 6y— Yoo, (B2
these overlaps will decrease approximately exponentially

with m+n [see Eq(B14)], with the width of the distribution z'=x sin 6,+y sin 6,4z cos 6, cos b, .

being ~2/Ei,00'

Applying this transformation to the elliptic Gaussian beam

functionE(x’,y’,z') in Eq.(6.12—8 of Yariv,"> we can then
APPENDIX B: GENERAL MODE OVERLAP separate it as a product of two ternis,(x) and E(y),
AMPLITUDES which we normalize for integration on they plane. Thex

We wish to give general expressions for the TEM expan-component is

sion amplitudesE; ,(w) of an arbitrary input Gaussian a P 2

beam that is coupled into an optical cavity. This problem is g (x)= \2lm ex;{ _ (X_EO) _ Tk(X=%o)
mathematically closely related to the calculation of elec- \/W—X Wy 2Ry

tronic Franck—Condon factors in the harmonic approxima- : .

tion. Below we give a derivation that exploits a method one —ikx sin 6.— I—kz CoS 6. CoS 6.+ I_,7

of the authors developed for that problémRecently, we 2 g o2
became aware of two previous publications that reported (B3)

mode “coupling coefficients.” The first was an article by

Kogelnik?® which provided general close form expressionswhere the beam parametars, R,, and#, are functions of

for the case of a perfectly aligned cavity, but only presented’ as for the TEM modes parameters of E(2). However,
results for the coupling to the lowest order mode in the caseve have to approximate’ =z in the argument of these pa-
of a misaligned input beam. Bayer—Hefthpresented re- rameters, which is necessary for the evaluation of the overlap
sults with arbitrary misalignment as well as input mode mis-integrals below. Taking into account also the positigR of
match. The resulting expressions, however, are rather conthe beam waist in th&z plane, we have therefore
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B Z—Zyx ~ B 1 /ﬂ
WX(Z)_WXO 1+( Zy0 ) ’ Ex,m+1_m fo EHm(g)km+1(§)d§

1+

Ru(2) =(Z2—Zx) (B4) (B7)

_ m _2i7IE
Nm+1° xm-1
where we have introduced for  convenience
k(&) =exp—aé—bé—c,), with the simple property
Km+1=exp(—in)ky,. Using alsoH/,=2mH,,_; and integrat-
ing by parts, one can show that

2
Zyo
Z=Zuy |

Z— Zyx .
ny(z)=arctal z , Xo(Z)=Xgpt Z sin 6y,
X0

wherexg(z) is the beam displacement in tRedirection. The
confocal parameter is related to the beam waigtas usual,
z,0=mW2,N(w)/\. Analogous equations can be written for
the_ Ey(y) function_, With different_ parametersvyp, Zyy b
which allow for astigmatism of the input beam. Finally, no- _ _f H, ko (£)dé
. . . . . 2 mtm '
tice that the wave numbéx in this equation is the same as

that of the TEM modes we use to evaluate the expansiogpstituting this into the previous equation, we find the re-

m
f EHkm(8)dé= EJ Hm—1Km(£)dé

(B8)

amplitudes, since we are working in the frequency domaingsjon relationship

at fixed w. _

Since we have chosen the mode functions to be normal- ~ b e'” E
ized with respect to integrgtion over tfxg/ plarje, we can xm+lT Ty 2(m+1) x,m
calculate the overlap amplitudds ,,, which give the ex-
pansion of the input wave in terms of TE} cavity modes, N 1 [ m 2 Bo
by a m+ 1e x,m—1- (B9)
E; m(@)=E, m’éy 0 Since this gives the corre&x 1if we useEX ~1=0, one can

Ex,m: f g;(x) Ex(X)dX

1 w 5
:\/Zm—Tw W—J Hyn(é)exp —aé“—bé—cp)dé,

_w21+1+ik1 1 a5
=2 lwtw 2R R/ (B9
o W[ 2X, |kx0+k ;
=— - ik sin 6],

2l w2 R X

x5 ikx3 ik .
Ch=—>+ 2RX_§ Z(1—cos 6, cos by)

, A
T mt 7= 59,

with an analogous equation for tr’éy,m terms as integrals
over dy. For the case oE, ,, we are left with an integral

over the exponential term, which is easily solved by comple+

tion of squares to put it in standard form. The result is

~ W b?
EX,O: aw. eX 4a CO .

(B6)

calculate allE, , starting from theEx o given before. If one
correctly propagates alormthe parameters both of the input
beam and of the cavity modes, one can verify that the
Ei mn(w) coefficients are invariant in value, as expected.

Using these relationships, it is possible to calculate the
full set of E,,, overlap coefficients for the coupling of an
arbitrary input pulse having a Gaussian transverse profile. By
a straightforward extension of the present method, the case
of an arbitrary input with a Hermite—Gaussian profiénd
therefore any linear combination of such profilean be
handled as well.
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